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A B S T R A C T

Human impacts on wildlife stem from both our footprint on the landscape and the presence of people in wildlife
habitat. Each may influence wildlife at very different spatial and temporal scales, yet efforts to disentangle these
two classes of anthropogenic disturbance in their effects on wildlife have remained limited, as have efforts to
predict the spatial extent of human presence and its impacts independently of human footprint. We used camera
trap data from a 1400-km2 grid spanning wildlands and residential development in central California to compare
the effects of human presence (human detections on camera) and footprint (building density) on mammalian
predators. We then developed a model predicting the spatial extent of human presence and its impacts across the
broader landscape. Occupancy modeling and temporal activity analyses showed that human presence and
footprint had non-equivalent and often opposing effects on wildlife. Larger predators (pumas Puma concolor,
bobcats Lynx rufus, coyotes Canis latrans) were less active where human footprint was high but avoided high
human presence temporally rather than spatially. Smaller predators (striped skunks Mephitis mephitis, Virginia
opossums Didelphis virginiana) preferred developed areas but exhibited reduced activity where human presence
was high. A spatial model, based on readily available landscape covariates (parking lots, trails, topography),
performed well in predicting human activity outside of developed areas, and revealed high human presence even
in remote protected areas that provide otherwise intact wildlife habitat. This work highlights the need to in-
tegrate multiple disturbance types when evaluating the impacts of anthropogenic activity on wildlife.

1. Introduction

The expanding influence of humans has greatly impacted wildlife by
disrupting the distribution and activity patterns of animals globally
(Dirzo et al., 2014; Gaynor et al., 2018; Tucker et al., 2018). The in-
creasing human footprint on the landscape (i.e., urbanization, land use
change) is a key threat to wildlife across virtually all taxonomic groups,
not only through habitat loss and fragmentation (Hansen et al., 2005;
Fischer and Lindenmayer, 2007), but also because urbanized areas re-
present concentrations of anthropogenic “disturbance” (i.e., real or
perceived threats that elicit antipredator responses (Frid and Dill,
2002)), which may be actively avoided by wildlife. However, human
impacts are not restricted to developed areas only, as the mere presence
of humans has been shown to impact wildlife behavior and activity
even in wildland areas (Suraci et al., 2019a). The latter is particularly
salient given the rapid expansion of outdoor recreation into previously
undisturbed landscapes (Cordell et al., 2008) and its potential negative

effect on many wildlife species (Larson et al., 2016).
Wildlife species respond to human activities in complex ways, ran-

ging from acute behavioral changes to chronic distributional effects,
which may depend on the type, intensity, and frequency of disturbance
(Larson et al., 2016; Tablado and Jenni, 2017; Gaynor et al., 2018;
Tucker et al., 2018). Humans are a major source of mortality for many
wildlife species, particularly mammalian predators (Darimont et al.,
2015), and recent experimental work confirms that many species
therefore exhibit strong fear responses to human presence (Clinchy
et al., 2016; Smith et al., 2017; Suraci et al., 2019a). The fear induced
by human presence has correspondingly been shown to affect behavior
and activity patterns of wildlife at the landscape scale (Suraci et al.,
2019a), and fear may therefore mediate many of the impacts associated
with recreational activity in wildland areas (Larson et al., 2016;
Tablado and Jenni, 2017). When compared to the relatively transient
presence (and associated fear) of humans in wildlife habitat (e.g.,
during recreation), sustained and high-intensity disturbance associated
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with long-term land use changes (e.g., housing developments) may be
expected to exert even greater impacts on wildlife habitat use. Yet many
synanthropic species (e.g., mesopredators like striped skunks, Mephitis
mephitis, and Virginia opossums, Didelphis virginiana) appear to benefit
from increased human footprint on the landscape, taking advantage of
resource subsidies such as food waste (Ordeñana et al., 2010; Wang
et al., 2015) and/or decreased risk from other predators where human
activity is high (Muhly et al., 2011). Indeed, multiple anthropogenic
influences may simultaneously affect wildlife, potentially in opposition,
if for instance some species avoid risky interactions with people but
take advantage of human infrastructure or resources (Beckmann and
Berger, 2003; Bateman and Fleming, 2012; Suraci et al., 2019a).

An animal's response to a particular anthropogenic disturbance may
additionally depend upon the relative constancy or regularity of the
disturbance type in space and time and thus the animal's ability to
predict when and where potential threats from humans are likely to
occur. Predator-prey theory suggests that long-term, consistent spatial
variation in risk should lead to outright avoidance and thus changes in
prey space use (e.g., the “risky places hypothesis”) (Creel et al., 2008;
Dröge et al., 2017). Alternatively, predation risk that is more spatially
variable but exhibits regular temporal fluctuations (e.g., due to the
predator's daily activity cycle; Kohl et al., 2018) may lead to temporal
partitioning, where prey avoid predators in time by increasing activity
at times of day when the predator is less active (Suraci et al., 2019b).
Thus, it is possible that human development as a long-term, spatially
constant source of risk may be more likely to induce spatial displace-
ment and altered habitat use for wildlife species (i.e., avoidance of risky
places) (Frid and Dill, 2002; Tucker et al., 2018), while human presence
in wildlife habitat, which is less constant and largely restricted to
diurnal periods, may prompt shifts in temporal activity (Gaynor et al.,
2018).

Despite ample reason to expect that human footprint and human
presence will differ in their impacts on wildlife behavior and habitat
use, ambiguity exists in how wildlife species respond to these two ca-
tegories of anthropogenic disturbance. One reason for such ambiguity is
that human footprint is often used as a proxy for multiple forms of
anthropogenic disturbance, due in part to the ease of acquiring land-
scape level data on, e.g., land cover, human population density, and
built infrastructure (Venter et al., 2016). However, such variables may
be poor predictors of human presence across the landscape, particularly
in wildland areas where outdoor recreation is growing (Cordell et al.,
2008; Balmford et al., 2015). Using the human footprint as a proxy for
human presence may therefore conflate the effects of different types of
human disturbance on wildlife (Tablado and Jenni, 2017). However,
measuring the spatial extent of human presence outside of developed
areas, and thus the area over which human activity is likely to impact
wildlife, remains a challenge. Studies of human presence in wildland
areas typically rely on the localized deployment of sensors (e.g., camera
traps) in the environment, a site-specific approach that may not be
representative of landscape-scale patterns of human presence (Larson
et al., 2016; Gutzwiller et al., 2017) and may therefore overlook human
disturbance and its impacts in parts of the landscape not directly cov-
ered by camera trapping surveys (Monz et al., 2013). Thus, there is a
need to predict human presence in wildland areas from readily avail-
able landscape-level variables, allowing estimation of broad-scale spa-
tial patterns of human activity and associated impacts on wildlife be-
yond sites at which on-the-ground surveys have been conducted (Ladle
et al., 2017).

Here we use a network of camera-traps deployed across a gradient
of human recreational use and development in the Santa Cruz
Mountains of California to quantify the effects of both human footprint
(building density) and actual human presence (occurrence of people on
camera traps) on wildlife behavior and habitat use. We then model
where and when the observed impacts of human presence are likely to
be greatest on the landscape using a suite of spatial predictors of human
activity. We focus our analyses on large and medium-sized mammalian

predators, which experience the highest per capita risk of human-
caused mortality (Darimont et al., 2015) and are correspondingly
known to exhibit strong behavioral responses to the immediate pre-
sence of people (Clinchy et al., 2016; Smith et al., 2017; Suraci et al.,
2019a), but which also represent a range of responses to human de-
velopment, from reclusive large carnivores to synanthropic mesopre-
dators. This work was conducted in areas of the Santa Cruz Mountains
ranging from undeveloped tracts of forest to moderately developed
rural and exurban areas, thus typifying the mosaic of wildlife habitat
and human development characteristic of the wildland-urban interface
(WUI) (Radeloff et al., 2005, 2010).

2. Methods

2.1. Study area

The Santa Cruz Mountains (37° 10′ N, 122° 3′ W) encompass a di-
verse landscape comprised of large tracts of relatively undisturbed na-
tive vegetation intermixed with low- and intermediate-density devel-
opment that are surrounded by heavily developed areas along the
fringe. One-third of the landscape falls within the wildland-urban in-
terface (Martinuzzi et al., 2015) with a substantial portion of more
remote public lands being available for recreational activities (e.g.,
biking, hiking, dog walking). The study area is crisscrossed by highways
and numerous smaller roads providing access to rural houses and de-
velopments. The region thus provides marked gradients of development
and human recreational pressures.

2.2. Camera trap study design

We deployed a grid of camera traps (Bushnell Trophy Cameras)
across approximately 1400 km2 of the Santa Cruz Mountains, CA, USA,
focusing on undeveloped and moderately developed areas that still
provide substantial wildlife habitat (Fig. 1). We created a grid for 100
camera traps, with 4 km between the center of each grid cell. This
systematic sampling approach was chosen to facilitate accurate esti-
mates of habitat use by a range of species that differ in average home
range size and movement patterns (Efford and Dawson, 2012; Neilson
et al., 2018) We placed camera traps within 400 m of the center of each
grid cell along landscape features likely to maximize detection of
mammalian predators. We were unable to place 12 cameras due to land
access or safety issues, leading to a total deployment of 88 cameras.
Cameras were deployed using standardized procedures (O'Connell
et al., 2011; Burton et al., 2015), being placed at a height of 30–90 cm
and oriented along hiking trails, forest roads, or game trails used by
wildlife to increase the probability of detection. We programmed
cameras to take 3 photos per detection event, with at least a 1 min delay
between subsequent detections.

Camera traps were deployed for five to seven weeks during three
separate study periods: Spring 2015 (10 March to 13 April), Autumn
2015 (23 August to 10 October), and Spring 2016 (4 March to 21 April).
During each study period, we deployed and retrieved camera traps on a
rolling basis, and the date ranges noted above correspond to the weeks
when at least 80% of the 88 camera traps were active. We scored all
camera trap images for the presence of mammalian predator species
including the sole large carnivore in the Santa Cruz Mountains, the
puma (Puma concolor), and a suite of mammalian mesopredators
(coyote Canis latrans, bobcat Lynx rufus, gray fox Urocyon ciner-
eoargenteus, northern raccoon Procyon lotor, striped skunk, and Virginia
opossum). We also scored all detections of humans on camera traps. All
images of the same species (including humans) on the same camera
were considered independent occurrences if separated by at least
30 min (Wang et al., 2015).
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2.3. Anthropogenic and habitat covariates

For each camera site, we measured several anthropogenic and ha-
bitat covariates that could potentially affect both human and wildlife
activity, including building density (BUILDING), road density (ROAD),
trail density (TRAIL), distance to urban area (URBAN), distance to
public open space (i.e., state and local parks, outdoor recreation areas;
OPEN), distance to parking lot (a proxy for accessibility; ACCESS),
proportion of forest cover (FOREST), elevation gradient (ELEV), pro-
portion of visible landscape (i.e., vista opportunities; VIEW), rugged-
ness (RUGGED), topographic position index (TPI), and amount of
wildland-urban interface within 1 km (WUI). All covariates are pre-
sented in Table 1 and described in detail in the Supplementary
methods. All GIS analyses were performed using the Python program-
ming language (v. 2.7.9; Python Software Foundation, Wilmington, DE,
USA) and ArcGIS for Desktop (v. 10.6.1; ESRI Inc., Redlands, CA, USA).

Our camera grid spanned a substantial gradient of both human
presence and human footprint. The average number of independent

(i.e., separated by 30 min) human groups detected per day across the 88
camera sites ranged from 0 to 6 (mean ± SD = 1.2 ± 1.8 human
groups per day), with 12 of 88 sites experiencing an average of 0
visitors per day. The largest total number of independent human groups
detected in single day was 13. Building density ranged from 0 to 568
buildings within 1 km of the camera site (mean ± SD= 60.5 ± 100.2
buildings). Importantly, these two forms of human disturbance were
not strongly correlated across camera sites (Pearson's correlation coef-
ficient = −0.22, p = 0.058).

2.4. Comparing the effects of human presence and human footprint on
wildlife habitat use

For each camera trap, we derived estimates of human presence at
both the daily and study period (i.e., Spring 2015, Autumn 2015, or
Spring 2016) levels from images of humans recorded on camera traps.
Daily estimates were simply the total number of independent human
detections during each calendar day on a given camera trap (humans

Fig. 1. The study area in the Santa Cruz Mountains, California, USA, displaying the locations of camera traps (black dots), protected areas (dark green shading),
undeveloped areas (light green), and developed areas (light gray) across the region. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 1
Environmental variables measured for each camera site and data sources from which variables were derived.

Variable Description Data source

Anthropogenic
BUILDING # of buildings within a 1 km radius Municipal, county, and state agencies; Microsoft Building Footprint, 2018
WUI # of wildland-urban interface parcels within a 1 km radius (Martinuzzi et al., 2015)
URBAN Euclidean distance to the nearest medium to high density urban areas (Martinuzzi et al., 2015)
OPEN Euclidean distance to the nearest public open space California Protected Areas Database; GreenInfo Network, 2017
ROAD Length of road network within a 1 km radius Municipal, county, and state agencies
TRAIL Length of trail network within a 1 km radius Municipal, county, and state agencies; OpenStreetMap, 2017
ACCESS Euclidean distance to the nearest parking lot or campground Municipal, county, and state agencies; OpenStreetMap, 2017

WEEKEND Day of the week, coded as weekend (Saturday, Sunday) or weekday –
Habitat
FOREST % of forested landscape within a 1 km radius National Land Cover, v2 (30m); US Geological Survey 2011
VIEW % of visible landscape within a 1 km radius Digital Elevation Model (30 m); US Geological Survey 2011
ELEV Elevation range within a 1 km radius Digital Elevation Model (30 m); US Geological Survey 2011
RUGGED Surface roughness within a 1 km radius Digital Elevation Model (30 m); US Geological Survey 2011

TPI Topographic position relative to ridges and valleys within 1 km Digital Elevation Model (30 m); US Geological Survey 2011

B.A. Nickel, et al. Biological Conservation 241 (2020) 108383

3



per day, or HPD). Study period-level estimates were the number of
humans detected per day on a given camera averaged across each study
period (meanHPD). We used building density (i.e., BUILDING, de-
scribed above) as our estimate of human footprint at each camera site.

To estimate the effects of the two forms of human disturbance on
wildlife habitat use and behavior, we fit multi-species occupancy
models (Burton et al., 2012; Broms et al., 2016) to camera trap data on
detections of the seven mammalian predators described above. Occu-
pancy models estimate two parameters, both of which may be affected
by human disturbance: site occupancy (ψ) and detection probability (p).
As originally formulated (e.g., MacKenzie et al., 2003), occupancy and
detection probability depend on an assumption of closure, i.e., that an
individual that uses a given camera site will always be present and
available for sampling. This assumption may be violated in camera trap
studies when the actual area sampled by a camera is substantially
smaller than the home ranges of the animals surveyed (Efford and
Dawson, 2012; Burton et al., 2015; Neilson et al., 2018). We therefore
treated the occupancy (ψ) and detection probability (p) parameters
estimated from our models as proxies for the probability of occurrence
(i.e., whether a given species occurred at a site during sampling) and
intensity of use (i.e., the overall activity of a species at a given site)
respectively. Species occurrence is likely to be lower where high human
disturbance reduces habitat suitability. Intensity of use is a function of
both animal behavior and the density of individuals using the area
sampled by the camera trap. Thus, if fewer individuals occur in dis-
turbed habitats and/or if individuals reduce their activity levels or in-
creased cryptic behavior where disturbance is high, this will lead to
fewer detections on camera and lower estimates of intensity of use.

As all of our target wildlife species are at least partially nocturnal,
particularly where humans are present (Wang et al., 2015), we defined
each night that a camera was active as a survey (Burton et al., 2012),
and recorded whether a given species was detected (1) or not (0) over a
24-hour period spanning each night (from noon to noon). Our estimates
of wildlife species detection were therefore offset (by 12 h) from our
daily estimates of human activity on camera such that detection of a
wildlife species during a given nocturnal period is modeled as a func-
tion of the number of humans present during the immediately pre-
ceding diurnal period.

We formulated our occupancy models as hierarchical zero-inflated
binomial models with separate binomial submodels describing ψ and p
(MacKenzie et al., 2002; Royle and Dorazio, 2008). We fit two occu-
pancy models varying only in the type of human disturbance used to
model ψ and p, i.e., human footprint (building density) or human pre-
sence (meanHPD and HPD for ψ and p respectively). Each model also
included environmental covariates that could affect occupancy and
detection probability at camera sites (i.e., FOREST, RUGGED, and TPI),
as well as an interaction between FOREST and human disturbance
(presence or footprint) to account for potential changes in wildlife re-
sponsiveness to human disturbance with varying levels of protective
cover. All covariates were normalized (mean centered and scaled by
one standard deviation) prior to model fitting. Full details of the multi-
species occupancy model are provided in the Supplementary methods.

We analyzed the occupancy models in a Bayesian framework using
the JAGS language called through the package R2jags in R (v. 3.4.2; R
Core Team, 2019). For each model, we ran three Markov Chain Monte
Carlo (MCMC) chains of 20,000 iterations each and made inference
from 1000 samples from the posterior distribution of each chain after a
burn in of 15,000 and a thinning rate of 5. We chose vague priors for all
variables and random starting values for all chains. We confirmed the
convergence of MCMC chains by visually inspecting trace plots, and via
the Gelman-Rubin statistic (R) (Hobbs and Hooten, 2015). We assessed
model fit using Bayesian p-values (Hobbs and Hooten, 2015) calculated
from the Freeman-Tukey and chi-squared statistics (Royle and Dorazio,
2008). In describing the effect of model covariates on ψ and p below, we
report the posterior probability that the coefficient estimate for a given
covariate is more extreme (greater or less) than zero (hereafter,

‘posterior probability’).

2.5. Comparing the effects of human presence and human footprint on
wildlife nocturnality

We estimated the degree to which wildlife activity was concentrated
during nocturnal hours by calculating the time difference in hours be-
tween noon and each detection of a wildlife species on camera. We used
the absolute value of this “hours to noon” estimate as a measure of
nocturnality such that we considered detections occurring farther from
noon (i.e., closer to the middle of the night) to exhibit greater noc-
turnality. We then calculated the average nocturnality value for each
species at each camera site, as well as the total number of independent
detections of that species at each site. We used linear regression to
compare the effects of human presence and human footprint on species
nocturnality. We estimated camera site-level human presence as human
detections per week (HPW), averaged across all three study periods (see
above) at a site, and estimated site-level human footprint from building
density (BUILDING) as described above. Both HPW and BUILDING were
normalized to permit direct comparison of coefficient estimates, and log
transformed to account for heterogeneity of variances. For each wildlife
species, we fit a single, weighted linear regression model including both
HPW and BUILDING as covariates and total detections of the species as
a weighting term. We confirmed model fit by inspecting residual vs.
fitted value and quantile-quantile plots.

2.6. Predicting the intensity of human presence across the landscape

We evaluated landscape scale predictors of human activity to de-
termine where and when human presence would be concentrated on
the landscape beyond developed areas. We estimated camera site-level
human presence based on daily counts of humans detected at each
camera, as described above. We expected temporal variation in human
activity due to a “day-of-the-week effect” (WEEKEND), given that
outdoor activity is typically greater on weekends when recreational
opportunities are greatest (Nix et al., 2018). We therefore summed
human counts for each camera site based on day of the week, creating
two estimates per site corresponding to expected low and high human
activity, i.e., counts during the 5 days in the middle of the week
(Monday–Friday; low activity) and those during the 2 days on the
weekend (Saturday and Sunday; high activity). To account for uneven
sampling effort between level of activity (weekday versus weekend), we
included the total number of weekday or weekend days a camera was
active as an offset in models described below, resulting in a response of
humans per day (HPD). We modeled HPD as a function of multiple
anthropogenic covariates related to human activity and accessibility
(ROAD, BUILD, URBAN, WUI, TRAIL, OPEN, and ACCESS), as well as
natural features that may drive recreational use (FOREST, RUGGED,
ELEV and VIEW). To evaluate whether any landscape characteristics
associated with human activity varied between weekends versus
weekdays, we included a 2-way interaction between WEEKEND and all
other covariates. We normalized all covariates to improve model con-
vergence and to facilitate comparison of model coefficients among
covariates (Gelman, 2008).

All pairs of covariates were tested for collinearity by examining
Pearson correlation coefficients (rp) and three pairs were found to be
relatively strongly correlated (rp > 0.7). ELEV and RUGGED showed
substantial collinearity (rp = 0.94) and, because RUGGED provided a
meaningful measure of terrain complexity assumed to influence re-
creational activity such as hiking, ELEV was dropped from the analysis.
ROAD and BUILD were also found to be strongly correlated with WUI
(rp = 0.78 and rp = 0.87, respectively) and given that WUI is de-
termined, in part, by both BUILD and ROAD (see Supplementary
methods), we only retained WUI in the model. All other pairs of cov-
ariates exhibited limited correlation (rp ≤ 0.4).

Based on Vuong closeness tests (Vuong, 1989), we formulated our
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model as a zero-inflated Poisson (ZIP) model, as data were skewed to-
wards counts of zero humans per camera day. ZIP model and Vuong
closeness tests were fit using the R package pscl. Beginning with a full
model that included all covariates just described (except those excluded
for collinearity), we determined the best supported ZIP model via
backward stepwise elimination of variables based on AICc (calculated
using the R package MuMIn). Model quality and goodness of fit was
assessed using adjusted pseudo-R2 as proposed by Martin and Hall
(2016). We performed all analyses in R (v. 3.4.2; R Development Core
Team, 2010).

Finally, to illustrate the relative intensity of human presence across
the broader landscape, we used the suite of spatial covariates retained
in the best supported zero-inflated Poisson model to project model
predictions across the Santa Cruz Mountains study area. Spatial pre-
dictions were only made for areas characterized by relatively low de-
velopment (≤120 buildings km−2, constituting wildland to exurban
areas, see Fig. S1), as human presence in heavily developed areas (i.e.,
the cities of Santa Cruz and San Jose and major suburbs) is assumed to
be consistently high. We limited our prediction area to a 2-km buffer
(half the distance between neighboring camera traps) surrounding the
minimum convex polygon of all camera trap locations such that pre-
dictions were restricted to the area actually sampled by camera traps
(Fig. S1).

3. Results

3.1. Effects of human presence and human footprint on wildlife habitat use

Our multi-species occupancy models revealed that human presence
and human footprint are not equivalent in their effects on wildlife ha-
bitat use (Fig. 2, Tables S1 and S2), with the magnitude and sign of the
effect of each human disturbance type varying substantially between
species. Both human presence and human footprint models exhibited
successful convergence (R<1.1 for all model terms) and excellent fit
(Bayesian p-values: 0.445 ≤ p ≤ 0.499). Several species exhibited a
positive relationship between the probability of occurring at a camera
site (ψ) and human presence (average human detections per day) at that
site (pumas, bobcats, and foxes; posterior probability for all species
≥0.99; Table S1). By contrast human footprint (building density) had a
strong negative effect on fox occurrence probability (posterior

probability = 1; Fig. 2, Table S2). Several well-known synanthropic
species (coyotes, skunks, and opossums) exhibited relatively strong
positive associations between occurrence probability and footprint
(posterior probability: coyotes = 0.99, skunks = 0.96, opos-
sums = 0.92).

Human presence and human footprint had similarly non-equivalent
effects on the intensity with which wildlife used the camera sites (i.e.,
overall activity level, p). The number of human detections per day had a
strong negative effect on the intensity of use by skunks and opossums
(posterior probability = 0.99 and 0.97, respectively), with bobcats and
foxes showing the opposite pattern (posterior probability = 1 for both
species; Fig. 2, Table S1). Pumas (0.97), bobcats (0.99), and foxes (1.0)
were all less active with increasing human footprint, while common
synanthropic species showed increasing intensity of use with increasing
footprint (skunks and raccoons, posterior probability = 1.0 for both
species; Fig. 2, Table S2).

For several species, the effects of human presence on habitat use
were mediated by the availability of forest cover. Both foxes and
opossums were increasingly likely to occur at sites with high human
presence as the availability of forest cover increased (Fig. 3a,b; Table
S1). Coyotes similarly exhibited increased occurrence probability at
high building density sites where high forest cover was available, while
bobcats showed the opposite pattern, though with substantial varia-
bility (Fig. 3c,d; Table S2). Full results of the human presence and
human footprint occupancy models are presented in Tables S1 and S2.
Estimates of average use intensity (p) and probability of occurrence (ψ)
for each species are presented in Table S3.

3.2. Effects of human presence and human footprint on wildlife nocturnality

Several wildlife species exhibited significant temporal shifts in their
diel activity patterns across the gradients of human presence and/or
footprint. Pumas (weighted linear regression: F1,67 = 17.22,
p < 0.001), bobcats (F1,67 = 3.81, p = 0.05), and coyotes
(F1,67 = 8.47, p = 0.007) exhibited increased nocturnality as human
presence at a site increased. Bobcats also exhibited increased nocturn-
ality with increasing building density (F1,67 = 9.51, p = 0.003) while
foxes were moderately less nocturnal at increasing levels of building
density (F1,67 = 8.38, p = 0.005; Fig. 4, Table S4).

Fig. 2. Coefficient estimates from the multispecies occupancy models showing the effect of human presence (detections on camera; red) and human footprint
(building density; yellow) on occurrence probability (ψ) and intensity of use (p) for each wildlife species. Symbols to the right of zero (vertical line) indicate a positive
effect of the human disturbance metric on occurrence or intensity of use, and symbols to the left of zero indicate a negative effect. Thick horizontal lines are 90%
Bayesian credible intervals, and thin horizontal lines are 95% credible intervals. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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3.3. Predicting the intensity of human presence across the landscape

The ZIP model revealed a strong association between several land-
scape-level variables and the intensity of human activity outside of
developed areas (χ11,176 = 1163, p < 0.001; Pseudo R2 = 0.63;
Table 2; Fig. 5a). As expected, human activity (i.e., humans per day,
HPD) varied depending on the time of the week with increased activity
on weekends (βWEEKEND = 0.29, p < 0.001) compared to weekday use.
HPD also increased significantly in areas with greater opportunities for
recreational activities, including proximity to public open space
(βOPEN = −0.77, p < 0.001), higher trail density (βTRAIL = 0.99,
p < 0.001), greater proportion of vista opportunities (βVIEW = 0.10,
p < 0.001), and adjacency to recreational access points
(βACCESS = −0.89, p < 0.001). Additionally, HPD was greater in
proximity to highly developed urban areas (βURBAN = −0.16,
p = 0.04) as well as those dominated by exurban expansion into rural
landscapes (βWUI = 0.11, p < 0.001). However, an interaction with
weekend (βURBAN:WEEKEND = 0.46, p < 0.001) suggests activity is more
prevalent in areas farther away from developed areas on the weekend,
with use localized to areas near development during weekdays. The
surrounding natural characteristics of a site also influenced HPD with
decreased activity in more rugged landscapes (βRUGGED = −0.14,
p < 0.001), though human use of rugged areas increased on weekends
(βRUGGED:WEEKEND = 0.2, p = 0.004). We did not find significant cor-
relations for the remainder of the variables. The Vuong test suggested
that the ZIP model was a significant improvement over a standard
Poisson regression model (p < 0.0001).

4. Discussion

Although a growing body of research demonstrates that both human
footprint and human presence (including recreation) can have negative
impacts on wildlife (Larson et al., 2016; Gaynor et al., 2018; Tucker
et al., 2018), studies aimed at disentangling the concurrent effect of
both forms of disturbance on wildlife behavior are surprisingly rare.
Our results demonstrate that human presence and human footprint
have differing, and in some cases opposite, effects on wildlife habitat

use and activity patterns. These effects are likely widespread, as mod-
eling results indicated that human presence outside of developed areas
was extensive, particularly in protected areas with high recreational
potential. Moreover, we were able to predict the intensity of human
presence from landscape-level variables, demonstrating a methodology
that can be used by other researchers to estimate human impacts on
wildlife outside of developed areas. Together, these results refine our
understanding of how both human activity and development drive
changes in wildlife behavior and demonstrate that solely focusing on
one type of anthropogenic disturbance may lead to erroneous conclu-
sions regarding the way human-induced risk affects wildlife.

4.1. Contrasting effects of human presence and human footprint on wildlife
habitat use and behavior

Our results demonstrate that human presence and human footprint
are not equivalent in their impacts on wildlife habitat use and behavior.
Building density and other forms of development represent long-term
and spatially constant sources of disturbance, and several sensitive
wildlife species have been shown to avoid these risky places (Riley,
2006; Ordeñana et al., 2010; Wilmers et al., 2013). We correspondingly
found negative effects of building density on the habitat use of several
mammalian predators. Pumas and bobcats exhibited strong decreases in
intensity of use with increasing building density, though occurrence
probability was unaffected (Fig. 2), suggesting that these species re-
duced their overall activity levels in areas of high human footprint, but
still occasionally use habitat with moderate levels of development. Gray
foxes appeared to be particularly sensitive to human footprint, with
building density having a strong negative effect on fox occurrence
probability and intensity of use (Fig. 2). Thus, foxes tended to avoid
high human footprint and exhibited lower activity levels when present
in these areas.

By contrast, these same three predators (and to a lesser extent,
coyotes) exhibited increased occurrence and/or activity with increasing
human presence, despite growing experimental evidence that several
large and medium-sized predator species (including pumas and bob-
cats) exhibit strong fear responses to humans (Clinchy et al., 2016;

Fig. 3. Human disturbance interacts with
forest cover to affect wildlife species occur-
rence probability. The effect of human pre-
sence (detections on camera; a,b) and human
footprint (building density; c,d) on occur-
rence probability are shown for (a) foxes, (b)
opossums, (c) bobcats, and (d) coyotes at
both low (yellow) and high (green) levels of
forest cover. Low and high forest cover are
here defined as the 20% and 80% quantiles,
respectively, of forest cover across all camera
sites. Lines and shaded areas are predictions
and 95% Bayesian credible intervals from the
multi-species occupancy model. (For inter-
pretation of the references to color in this
figure legend, the reader is referred to the
web version of this article.)
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Smith et al., 2017; Suraci et al., 2019a). Previous observational studies
examining the impacts of recreationalists on mammalian predators
have found mixed results, ranging from a negative effect of human
presence on predator detections to neutral or positive effects on pre-
dator habitat use (Reed and Merenlender, 2008; Reilly et al., 2017;
Kays et al., 2017). We suggest that these differences may be due in part
to the spatial distribution of human presence on the landscape. Our
spatial modeling results (Fig. 5) revealed that human presence is rela-
tively high throughout many of the protected areas in the Santa Cruz
Mountains, and thus likely overlaps with high-quality habitat for many
species, potentially making the outright avoidance of human presence
in wildland areas overly costly. Additionally, highly mobile species

such as pumas, bobcats, and coyotes, may be positively associated with
areas of high human presence because, like humans, these species are
attracted to trails through wooded areas (Kays et al., 2017), which
provide energetically efficient movement pathways across relatively
large home ranges (Dickie et al., 2017). Our results indicate that, in-
stead of avoiding humans in space, these species take advantage of the
high temporal predictability of human activity to avoid humans in time,
becoming increasingly nocturnal as human presence increases (Fig. 4).
Increased wildlife nocturnality as a response to increasing human dis-
turbance has been demonstrated for many wildlife species globally
(Gaynor et al., 2018) and has been associated with both human foot-
print (Beckmann and Berger, 2003; Díaz-Ruiz et al., 2016) and high

Fig. 4. The effect of human disturbance on wildlife noc-
turnality. Nocturnality estimates (i.e., average time of de-
tections on camera expressed as hours from noon) at a given
camera site are plotted against human detections per week
and building density at that camera site for (a) pumas, (b)
bobcats, (c) coyotes, and (d) foxes. Fitted lines and shaded
areas represent the predicted effect,± 95% confidence in-
tervals, of human disturbance on nocturnality. Absence of a
fitted line indicates no significant effect of disturbance on
nocturnality. Only those wildlife species for which at least
one human disturbance type significantly affected nocturn-
ality are shown.
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human presence (e.g., recreation) in wildland areas (Wang et al., 2015;
Reilly et al., 2017). Restricting activity to nocturnal hours may involve
substantial costs for some wildlife species, e.g., by interfering with
foraging behavior or increasing overlap with predators or competitors
(Gaynor et al., 2018; Smith et al., 2018), but may nonetheless promote
coexistence by allowing humans and wildlife to use the same habitat
(Carter et al., 2012; Suraci et al., 2019b).

Human presence and human footprint also had opposing effects on
habitat use by skunks and opossums, synanthropic species which
commonly take advantage of human resource subsidies (e.g., food
waste) in developed areas (Bateman and Fleming, 2012). Recent ex-
perimental work demonstrates that, despite their strong association
with human development, these species are nonetheless fearful of im-
mediate human presence, reducing activity and foraging behavior when
perceived human presence was experimentally increased (Suraci et al.,
2019a). The present study confirms that these experimental results are
relevant at the regional scale. Despite exhibiting increased occupancy
(skunks and opossums) and detection probability (skunks) with in-
creasing building density, both skunks and opossums were substantially
less detectable in areas with high human presence, consistent with re-
duced activity levels in the presence of people. Taken together, these
findings suggest that, even for synanthropic species, human presence is
potentially costly, and that the benefits of exploiting anthropogenic
environments (e.g., resources subsidies) must be traded off against the
risks of a potentially dangerous direct encounter with humans.

For several predator species, occupancy of habitats with either high
human presence (foxes and opossums) or high human footprint (coy-
otes) increased with increasing forest cover, indicating that the avail-
ability of protective cover reduces the risk that some wildlife species
perceive from humans. Previous studies have similarly demonstrated
increased use of human-dominated landscapes by mammalian pre-
dators when the availability of protective cover is high (Boydston et al.,
2003; Ordiz et al., 2011; Suraci et al., 2019b), suggesting that cover
availability plays a key role in mediating coexistence between humans
and predators by reducing the impacts of anthropogenic disturbance on
predator behavior.

4.2. Predicting the intensity of human presence across the landscape

Projecting the predictions of our human presence model across the
broader landscape (Fig. 5A) reveals that human activity outside of de-
veloped areas is pervasive throughout the Santa Cruz Mountains region,
with several major protected areas (composed of otherwise high-quality
wildlife habitat) predicted to have relatively high levels of human use
intensity. Comparing the spatial distribution of human presence with
that of human footprint (Fig. 5B) highlights the fact that human pre-
sence (and its associated impacts on wildlife habitat use and temporal
activity) is not necessarily spatially linked to development, with areas
of high human presence intensity extending well beyond the heavily
developed cities and suburbs (Fig. 5). Indeed, relatively little land area

in the Santa Cruz Mountains is expected to experience low levels of
both human presence and human footprint. Completely “undisturbed”
habitat – areas predicted to experience zero human presence and to be
at least 1 km from the nearest building – accounts for only 1.14% of the
study area.

Human presence beyond heavily developed areas varied widely
across the region with the most important drivers of use related to
variation in accessibility and demand for recreation. In particular,
human presence was higher in conserved lands with infrastructure
providing access to recreational opportunities. Proximity to public open
space, vehicle access, and trail density were the strongest predictors of
human presence at a site, consistent with previous findings suggesting
that access to dense trail networks is correlated with significantly
higher visitation rates (Reed and Merenlender, 2008, 2011; Larson
et al., 2018). Similarly, ruggedness and the scenic potential of a site
were positively associated with human use. As such, human presence
was predicted to be regular and widespread in protected areas with
high recreation potential and where recreation infrastructure is well-
developed. Given that protected lands often overlap with high-quality
habitat for many species, elevated human activity in these areas likely
leads to substantial, yet unintended, impacts on wildlife from dis-
turbance.

We found higher levels of human presence at sites adjacent to urban
development as well as those immediately surrounded by the wildland-
urban interface (Patten and Burger, 2018; Larson et al., 2018). This
pattern is particularly significant for urban-adjacent reserves as the
potential for human-wildlife interactions and thus negative impacts is
likely greatest given the already elevated presence of humans in pro-
tected areas of the region. However, we detected a significant interac-
tion between distance to urban center and weekend (Table 1), in-
dicating that human presence in protected areas shifted depending on
the day of the week with greater concentrations of activity at sites
further away from developed areas on weekends (Rossi et al., 2015;
Larson et al., 2018). This shift in human activity depending on day of
the week meant that even relatively remote areas of the Santa Cruz
Mountains were exposed to substantial human presence during some
time periods.

4.3. Conservation and management implications

Our approach to modeling human presence and evaluating species
response to human activity can be used to guide future research and
inform guidelines for the management of non-consumptive recreation
in open space lands. For example, landscape level measures of the
human footprint, such as land cover, population density, and built in-
frastructure, are well developed and readily available (Venter et al.,
2016), however spatially explicit data on human presence outside of
developed areas are notably absent (but see Gutzwiller et al., 2017).
Our approach helps address this gap and demonstrates that the in-
tensity of human presence on the landscape (including in wildland
areas) can be predicted from landscape-level variables, allowing esti-
mation of human impacts on wildlife even outside of developed areas.
Further, we showed that modeling human presence is possible using
increasingly available sources of spatial data (e.g., parking lots, eleva-
tion, trails) allowing for projecting or forecasting the intensity of
human activity at the landscape scale (Fig. 5). Predictive models of this
nature could be used to improve landscape-wide management of non-
consumptive forms of human disturbance. For example, when planning
for future recreation uses of an area, land-use managers could predict
human activity, and thus disturbance potential, based on where they
place trails and parking lots.

Taken together, our research demonstrates that in many cases the
human footprint on the landscape is unlikely to be an adequate pre-
dictor of total anthropogenic impacts on wildlife communities given
that (i) human presence and development differ in their effects on
wildlife behavior and habitat use (Fig. 2), and (ii) the potential impacts

Table 2
Fixed effects terms from the best-supported model for predicting human pre-
sence on the landscape.

Model parameter β SE t p

Pseudo R2 = 0.63
TRAIL 0.99 0.004 7.53 < 0.001
ACCESS −0.89 0.006 5.73 < 0.001
OPEN −0.77 0.004 14.64 < 0.001
WEEKEND 0.29 0.004 12.92 < 0.001
RUGGED −0.14 0.004 4.89 < 0.001
WUI 0.11 0.005 −4.68 < 0.001
VIEW 0.10 0.004 −2.21 0.05
URBAN −0.16 0.004 −2.12 0.03
URBAN:WEEKEND 0.46 0.004 −2.43 0.004
RUGGED:WEEKEND 0.20 0.004 −2.21 0.02
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of human presence extend well beyond the spatial footprint of devel-
oped areas (Fig. 5). Occupancy modeling results revealed that several
wildlife species avoided human development overall, meaning that
projected increases in development (Smith et al., 2019) will only in-
crease the importance of protected areas in providing wildlife habitat.
However, as development intensifies so will human activity and the
associated costs to wildlife in terms of changes in behavior and activity
patterns, posing serious challenges for landscape management and

conservation. This is especially true in and around protected areas
where recreation activity is often greatest but not always compatible
with conservation objectives (Larson et al., 2016). Conservation plan-
ning should thus take into account not only wildlife distributions but
also the spatial extent of human activities, including recreational de-
mand, and its compatibility with conservation goals and other land-
management objectives.

Fig. 5. Comparing human presence and human footprint across the broader landscape. (A) The relative intensity of human presence, ranging from low (light pink) to
high (dark red), is derived from our modeling results (Table 2) using publicly available sources of spatial data. Human presence is projected across areas of the Santa
Cruz Mountains (SCM) characterized by relatively low development (≤120 buildings km−2; see Methods and Fig. S1 for details). (B) Human footprint (low = light
blue, high = dark blue) is derived from the density of all building points, estimated using a Gaussian kernel with 1-km bandwidth, and is plotted for all areas of SCM
with building density ≥ 1 building km−2. Human presence and human footprint surfaces are truncated to within 2 km of the extent of our camera trap grid. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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