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A B S T R A C T   

Depending on management practices, agricultural lands can either pose substantial barriers to species movement 
or can support landscape connectivity by linking areas of high-quality habitat. Balancing connectivity and sus-
tainable food production on agricultural lands is critical to conservation in the conterminous United States 
(CONUS) where agriculture makes up close to half of total land area. However, limited guidance exists on where 
to target conservation resources to maximize benefits for native species and food security. To quantify the po-
tential contribution of agricultural lands to the movement of organisms, we developed a novel method for 
estimating agricultural management intensity (based on remotely sensed temporal variation in vegetation cover) 
and incorporated these estimates into a CONUS-wide model of ecological flow connectivity. We combined our 
connectivity results with data on the productivity, versatility, and resilience of agricultural lands (PVR) to 
identify conservation opportunities that support both biodiversity and food production. The highest levels of 
connectivity on agricultural lands occurred on relatively unmodified rangelands and on cropland and pasture 
surrounded by large amounts of natural land cover. Mapping connectivity and PVR across CONUS revealed 10.2 
Mha of agricultural lands (2.7 %) with high value for both connectivity and food production, as well as large 
amounts of agricultural land (>140 Mha in total) with high value for either cultivation or supporting biodi-
versity. Drawing on these findings, we provide recommendations on the types of conservation approaches most 
suitable for a given agricultural system and link these recommendations to specific government incentive 
programs.   

1. Introduction 

Preserving and enhancing the natural movement of organisms is 
critical to mitigating the current biodiversity crisis (Tilman et al., 2017) 
and is a key strategy for promoting species adaptations to climate 
change (Heller and Zavaleta, 2009), with well-connected landscapes 
facilitating gene flow, migration, dispersal, and range shifts (McRae and 
Beier, 2007; Littlefield et al., 2019). In the United States, private agri-
cultural lands may play an important role in facilitating such ecological 
flows by providing linkages between areas of high-quality habitat 
(Kremen and Merenlender, 2018; Garibaldi et al., 2021). Indeed, agri-
cultural lands (including cropland, pasture, and rangeland) compose 
almost half the land area in the conterminous United States (CONUS) 

and, in many areas of the country, have continued to expand over the 
last decade (Lark et al., 2020). This trend is anticipated to continue (Sohl 
et al., 2014), underscoring the importance of centering agricultural 
landscapes in any comprehensive assessment of connectivity across the 
U.S. 

Agricultural expansion, particularly high intensity crop production, 
has been a major driver of biodiversity declines globally through habitat 
loss, pesticide use, and the impacts of mowing and harvest (Newbold 
et al., 2015; Stanton et al., 2018). Intensively farmed areas may addi-
tionally represent substantial barriers to movement for a variety of taxa 
(Wimberly et al., 2018; Maas et al., 2021). However, low-intensity 
agriculture and wildlife-friendly management practices (e.g., grassland 
or forest strips, crop diversification) can reduce these barriers to 

* Corresponding author at: 11050 Pioneer Trail, Suite 202, Truckee, CA 96161, USA. 
E-mail address: justin@csp-inc.org (J.P. Suraci).  

Contents lists available at ScienceDirect 

Biological Conservation 

journal homepage: www.elsevier.com/locate/biocon 

https://doi.org/10.1016/j.biocon.2022.109896 
Received 14 May 2022; Received in revised form 29 November 2022; Accepted 28 December 2022   

mailto:justin@csp-inc.org
www.sciencedirect.com/science/journal/00063207
https://www.elsevier.com/locate/biocon
https://doi.org/10.1016/j.biocon.2022.109896
https://doi.org/10.1016/j.biocon.2022.109896
https://doi.org/10.1016/j.biocon.2022.109896
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biocon.2022.109896&domain=pdf


Biological Conservation 278 (2023) 109896

2

movement and facilitate the flow of organisms across agricultural 
landscapes (Kremen and Merenlender, 2018; Maas et al., 2021). Facili-
tating movement can bolster biodiversity in agricultural systems, which 
may in turn enhance ecosystem function and services in those land-
scapes (Blitzer et al., 2012; Mace et al., 2012; Grass et al., 2019). Each 
year, governments spend billions of dollars globally to incentivize 
wildlife-friendly farming and other agri-environment schemes (Donald 
and Evans, 2006), though limited information exists on where to target 
such financial incentives to maximize biodiversity benefits, potentially 
leading to the haphazard allocation of resources (Polasky et al., 2008; 
Kremen and Merenlender, 2018). 

Increases in global food production (of at least 25 % by 2050; Hunter 
et al., 2017) will be necessary to support a growing human population. 
At the same time, climate change and urban and suburban expansion 
pose potential threats to food security by reducing the amount of land 
area that is highly suitable for cultivation (Tu et al., 2021; Kummu et al., 
2021). It is therefore imperative to balance the dual goals of promoting 
biodiversity and safeguarding the working lands that are most critical 
for food production (Leclère et al., 2020). Two general strategies have 
been proposed for balancing biodiversity and agricultural objectives: 
‘land sharing’, i.e., maintaining or enhancing the capacity of cultivated 
lands to support biodiversity through wildlife-friendly farming prac-
tices, potentially at the expense of yield; and ‘land sparing’, which ad-
vocates intensifying food production in some areas while preventing the 
expansion of agriculture into more natural landscapes, e.g., through 
formal protection (Fischer et al., 2008, 2014; Phalan et al., 2011). In 
reality, these strategies represent endpoints along a continuum of 
management options, and at regional scales, elements of both strategies 
will be needed to maintain connectivity among protected areas and to 
support the flow of organisms that provide ecosystem services to agri-
cultural lands (Kremen, 2015; Grass et al., 2019; Garibaldi et al., 2021). 
Managing for the multifunctionality of agricultural landscapes (i.e., the 
capacity of these landscapes to fulfill a diverse range of economic, social, 
and ecological functions) has been identified as a key conservation 
objective for agricultural lands (Fischer et al., 2017; Wittman et al., 
2017; Frei et al., 2020), and one that may be achievable at the regional 
scale through a mixture of land sharing and land sparing approaches 
that increase landscape heterogeneity (Grass et al., 2019). Identifying 
which landscapes may be best suited to each strategy therefore repre-
sents an important conservation challenge. For instance, areas where 
both agricultural productivity and connectivity are high may provide 
key opportunities for incentive programs that promote both food pro-
duction and the flow of organisms through wildlife-friendly farming 
practices. Alternatively, landscapes with high potential for long-term 
food production but relatively limited connectivity value may be good 
candidates for government programs that keep lands in production and 
protect against conversion to other land uses (e.g., urbanization). 

To explore the importance of agricultural lands in supporting con-
nectivity, we modeled the potential net movement of organisms across 
all terrestrial landscapes in CONUS using a circuit theory-based con-
nectivity model (McRae et al., 2008; Dickson et al., 2019). We used a 
‘species-agnostic’ approach based on landscape structure, with less- 
modified landscapes assumed to support greater ecological flow (e.g., 
Dickson et al., 2017; Marrec et al., 2020). Such connectivity models have 
emerged as an important tool for large scale prioritization efforts 
(McRae et al., 2016), identifying areas that support ecological connec-
tivity and integrity for a wide range of species (Dickson et al., 2017), and 
have been shown to perform well in describing movement potential for 
individual species of interest (Krosby et al., 2015). We combined our 
connectivity model results and existing information on agricultural land 
quality across CONUS to identify conservation opportunities on agri-
cultural lands that balance species connectivity and long-term food se-
curity. We then linked these opportunities to existing federal 
conservation incentive programs that support producers in implement-
ing conservation practices on their lands. To facilitate use of these re-
sults by landowners, conservation advocates, and government agencies, 

we developed an interactive web map (https://csp-inc.org/ag-conn 
ectivity), which allows users to explore the novel spatial data gener-
ated by our analysis and provides guidance on using these layers to 
identify conservation opportunities. 

2. Methods 

We developed a CONUS-wide connectivity model with parameters 
(e.g., maximum movement distances) tailored to best reflect non-volant 
terrestrial vertebrate species. Previous authors have noted that agri-
cultural landscapes may represent ‘invisible mosaics’ (Fahrig et al., 
2011), with a particular land cover category (e.g., cropland) actually 
representing a range of impacts on animal movement due to variation in 
management practices such as fertilizer application or cropping in-
tensity. Here we build upon existing large-scale connectivity studies (e. 
g., McGuire et al., 2016; Dickson et al., 2017; Littlefield et al., 2017) by 
explicitly incorporating estimates of agricultural management intensity 
on cropland and pasture when determining landscape resistance to 
movement, using a novel method based on variation in vegetation cover 
during the growing season. 

2.1. Estimating human land use intensity 

To evaluate the influence that agricultural lands and other modified 
landscapes exert on ecological flow, we estimated human land use in-
tensity (L) for all locations (i.e., pixels in a gridded landscape) across 
CONUS. Our estimates of human land use intensity were based on a 
procedure originally described by Theobald (2013), which assigns 
literature-supported values of intensity to multiple forms of human land 
use and integrates these values into a single spatial data layer ranging 
from 0 (unmodified, ‘natural’) to 1 (heavily modified). Similar human 
land use intensity layers have formed the basis of previous ecological 
flow-based connectivity models (e.g., Dickson et al., 2017; Marrec et al., 
2020). 

To quantify land use intensity on agricultural lands, we started with 
existing, static L estimates for individual agricultural cover types (The-
obald, 2013) and incorporated a dynamic measure of management in-
tensity based on temporal variation in vegetation cover at a given 
location. Our primary goal with this approach was to quantify differ-
ences in management intensity among pixels of the same agricultural 
cover type under the assumption that management intensity will affect 
resistance to movement. We used high spatial resolution (10 m) data on 
2016 land cover from American Farmland Trust's Farms Under Threat 
(FUT) analysis, which integrates data from multiple national-scale 
datasets to define several agricultural and non-agricultural cover clas-
ses (CSP, 2020; data accessible from csp-fut.appspot.com). We focused 
on the four agricultural cover classes, which together account for 3.64 
million km2, or approximately 47.6 % of CONUS land area (Fig. 1). 
These agricultural classes are cropland (1,549,077 km2 across CONUS), 
pasture (430,369 km2), rangeland (1,658,472 km2), and woodland 
(174,323 km2). The woodland class is a subset of the Natural Resources 
Inventory forest class defined as “natural or planted forested cover that 
is part of a functioning farm unit” and is ≤160 m from cropland or 
pasture (CSP, 2020). Woodlands are included here to identify areas on 
active farms that may have low management intensity relative to other 
areas used for cultivation. We assigned each of these four classes with a 
baseline value of land-use intensity (L) corresponding with the general 
level of human disturbance associated with that agricultural type. For 
cropland and pasture, baseline L values of 0.5 and 0.4, respectively, 
were taken from Theobald (2013). Similar approaches to modeling 
ecological flow and/or landscape integrity have treated rangelands as 
having lower impact than cropland or pasture because rangelands tend 
to retain some natural vegetation cover and have relatively limited 
human influence (Buttrick et al., 2015; McRae et al., 2016). Woodlands 
are similarly characterized by relatively natural vegetation (natural or 
planted tree cover), albeit in close proximity to managed agricultural 
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lands. We therefore assigned a baseline L value of 0.2 to both rangelands 
and woodlands in an effort to capture the greater potential for wildlife 
movement through these cover types. 

For both cropland and pasture, the agricultural cover types charac-
terized by relatively intensive human management, we allowed L values 
to vary between pixels of the same cover type based on estimates of 
management intensity. Management intensity estimates were derived 
from temporal variability in vegetation cover based on the assumption 
that more intensively managed areas (e.g., croplands with high fertilizer 
inputs and/or multiple harvests per year; pasture subject to a high 
mowing frequency) will have greater variability in vegetation cover 
during the growing season than areas subject to less human intervention 
(e.g., fallow fields) (Franke et al., 2012; Gómez Giménez et al., 2017). 
We used a timeseries of Normalized Difference Vegetation Index (NDVI) 
values to estimate vegetation cover variability, acquiring cloud-free 
NDVI estimates at 16-day intervals from NASA's MODIS system 
(MOD13Q1 products). For each cropland and pasture pixel across 
CONUS, we used NDVI estimates over a five year period (2014–2018) 
centered on 2016, the year of our land cover dataset. NDVI estimates 
were acquired during the growing season for each year, with growing 
season start and end dates defined separately for each U.S. state based on 
the planting dates database developed by Sacks et al. (2010) (see Ap-
pendix A for details). While recognizing that some croplands are culti-
vated during the winter, we chose to limit our analysis to the (locally 
defined) warm growing season to (i) minimize noise in our dataset from 
seasonal changes in vegetation cover not associated with agricultural 
practices and (ii) avoid masking potentially high levels of vegetation 
cover variation during the growing season by incorporating NDVI esti-
mates for times of year when agricultural fields are left unplanted. 

For each pixel of cropland and pasture, we calculated the coefficient 
of variation for all NDVI values in all years (hereafter, cvNDVI) as our 
estimate of vegetation cover variability. The coefficient of variation was 
chosen to account for differences between vegetation types (e.g., 
different crops) and geographic location in average plant greenness. For 
each cover type (cropland or pasture), we centered cvNDVI values by 
first calculating the mean for all pixels of that cover type within the same 
USDA plant hardiness zone (PHZ; (USDA, 2012)) and then subtracting 
this mean value from the value for each pixel. PHZs describe bands of 
average annual minimum winter temperature across CONUS. We 
centered cvNDVI values based on means within a PHZ to account for 
potential differences in vegetation cover variability across latitudes and 
climatic conditions (e.g., lower variability in areas with shorter growing 
seasons). Averages (± SD) of mean-centered cvNDVI were − 0.05 (±
0.13) and − 0.03 (± 0.10) for cropland and pasture, respectively. To 
derive the final L value for cropland and pasture pixels, mean-centered 
cvNDVI values were added to the baseline L value for each cover type 
(0.5 for cropland and 0.4 for pastureland, see above), resulting in a 

range of final L estimates centered on the baseline value. Thus, pixels 
with lower than average vegetation cover variability for a given cover 
type and PHZ (i.e., negative mean-centered cvNDVI) received L values 
below the baseline value for that cover type and those with higher than 
average variability (positive mean-centered cvNDVI) received L values 
above the baseline. For rangeland and woodland, we did not incorporate 
vegetation index data into L estimates, instead using baseline L values 
for all pixels under the assumption that variability in NDVI will be more 
strongly associated with phenology and plant community composition 
than with human management intensity in the cover types characterized 
by relatively natural vegetation. 

We tested the validity of cvNDVI as a proxy for agricultural man-
agement intensity by comparing cvNDVI values between agricultural 
cover types; between irrigated, unirrigated, and fallow cropland; and 
across a gradient of nitrogen fertilizer use. These validation analyses are 
described in Appendix B. The validation steps confirmed the utility of 
cvNDVI as a proxy for management intensity, showing that (i) cropland 
pixels had significantly higher average cvNDVI than pasture; (ii) for 
both cropland and pasture, cvNDVI was positively correlated with ni-
trogen fertilizer usage; and (iii) among cropland pixels, irrigated crops 
had the highest average cvNDVI, followed by unirrigated crops and then 
fallow fields (Appendix B). Although our use of cvNDVI helps to achieve 
the goal of distinguishing between pixels of the same agricultural cover 
type (e.g., cropland) in their potential impacts on movement, it is 
important to note that this metric may not capture all dimensions of 
agricultural management intensity, potentially underestimating the 
impacts of practices (such as pesticide use) that may have relatively 
minor effects on variation in vegetation cover. As such, our cvNDVI- 
based metric provides a partial estimate of agricultural management 
intensity. 

To create a comprehensive layer of human land use intensity across 
CONUS, we combined our novel agriculture L layer with layers 
describing other forms of human land use, and incorporated the impact 
of nearby land uses and disturbances on a given location by allowing the 
value of each pixel to extend beyond the focal pixel itself. For all non- 
agricultural land uses we used an existing L model (CSP, 2019) that 
integrates multiple land use variables into three human impact cate-
gories - urban (including data on residential development and nighttime 
lights), transportation (including roads, railways, powerlines, and 
pipelines), and energy (including oil and gas wells, coal mines, and 
utility-scale solar and wind installations). Details on the development of 
the final L layer (Lall) are provided in Appendix A. 

2.2. Estimating landscape resistance and modeling connectivity 

We used our final land use intensity layer, Lall, to derive a landscape 
resistance surface, which estimates the difficulty an organism 

Fig. 1. Agricultural land cover across the conterminous United States (CONUS). (a) Agricultural land cover is mapped across CONUS, with bold white lines and labels 
denoting Agricultural Research Service (ARS) regions. (b) Total area of each agricultural cover type across CONUS. 
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experiences in moving through each pixel on the landscape (Zeller et al., 
2012). Following Dickson et al. (2017), who conducted a sensitivity 
analysis to determine an appropriate formula for deriving resistance 
surfaces by rescaling L values, we calculated resistance (R) as 

R = (Lall + 1)10
+ s

/
4,

where s is the percent slope of a given pixel, thus penalizing areas of 
steep slope to account for the effects of substantial elevational changes 
on the movement capacity of many terrestrial species (Dickson et al., 
2017). This resulted in resistance values ranging between 1 (natural 
landscape) and 1032 (heavily modified landscape). We assigned all 
water bodies greater than approximately 100 m across a resistance value 
of 1000 to reflect the difficulty of moving through water for terrestrial 
species. The above rescaling formula led to a relatively high contrast 
between the resistance values assigned to locations with low, medium, 
and high Lall values. For comparison, we derived a second resistance 
surface using a low-contrast rescaling formula suggested by Marrec et al. 
(2020). See Appendix C for a comparison of the two resistance surfaces 
and resulting connectivity models. 

We modeled source strength, i.e., the predicted probability or in-
tensity of movement from a given location on the landscape (McRae 
et al., 2008, 2016), as the degree of ecological integrity of a given pixel, 
which we calculated as 1 - Lall. Our source strength layer therefore 
ranged between 0 and 1, with relatively unmodified habitats receiving 
values close to 1, while partially modified landscapes (e.g., agricultural 
lands) received low but non-zero values. We assigned zero source 
strength to areas unlikely to represent sources of terrestrial animal 
movement, using the 2016 National Land Cover Database (NLCD; 
Dewitz, 2019) to set pixels categorized as developed, open water, 
perennial snow/ice, or barren rock (i.e., all NLCD cover classes <40) to 
zero. Resistance and source strength rasters for CONUS were derived at 
250-m resolution using Google Earth Engine (GEE; Gorelick et al., 
2017). 

Following McRae et al. (2016), we ran omni-directional connectivity 
models across CONUS using the Omniscape algorithm. Omniscape is 
based on concepts from electronic circuit theory (McRae et al., 2008; 
Dickson et al., 2019), modeling the movement of organisms across the 
landscape as the flow of electrical current through a circuit. Omniscape 
allows users to fit “coreless” connectivity models in which every pixel 
may potentially serve as a source and/or target of movement, rather 
than only modeling connectivity between habitat cores, and thus 
allowing current to potentially flow in all directions. The algorithm uses 
a moving window approach, iteratively treating every pixel in the source 
strength layer with a value greater than zero as a target for electrical 
current and connecting that pixel to all other non-zero pixels within the 
moving window radius, which serve as current sources. Current is then 
injected into the source pixels (with the amount of current proportional 
to source strength) and flows across the resistance surface (McRae et al., 
2016; Landau et al., 2021). The cumulative current flow across all it-
erations of the moving window provides an estimate of the probability 
or intensity of the movement of organisms through every pixel on the 
landscape. The moving window radius is a key parameter, setting the 
maximum movement distance (i.e., the maximum distance between 
source and target pixels). Here we used a radius of 150 km, approxi-
mating the upper dispersal distances of many large-bodied terrestrial 
vertebrates (Sutherland et al., 2000) under the assumption that 
continuous areas of habitat capable of supporting the movements of 
species with large space requirements will also support the movement of 
less vagile species. For comparison, we also ran connectivity models 
using smaller moving window radii, approximating the movement ca-
pacity of smaller-bodied, less vagile terrestrial species. These compari-
son models are described in Appendix C. Connectivity models were run 
in the Omniscape.jl software package in Julia (Landau et al., 2021). 

We summarized cumulative current flow values from the Omniscape 
model within regions of the U.S. (defined by the USDA Agricultural 

Research Service [ARS]) and compared current flow on agricultural 
lands with that on other land cover/land use types (including developed 
and natural lands), providing an overview of agricultural land contri-
butions to connectivity across the country. These analyses are described 
in detail in Appendix A. To further explore the drivers of high or low 
connectivity values on agricultural lands, we also estimate the total 
amount of natural land cover and development (based on NLCD cate-
gories) within a 1-km radius of each location on agricultural lands, 
hypothesizing that agriculture surrounded by greater amounts of natural 
land cover and lower levels of development would tend to have higher 
current flow. We tested the effect of surrounding land cover/land use on 
agricultural land current flow using a spatial error regression analysis 
(Dale and Fortin, 2014) described in Appendix A. 

2.3. Identifying conservation opportunities on agricultural lands 

To help identify and prioritize conservation opportunities on agri-
cultural lands across CONUS, we categorized all agricultural pixels 
based on both their potential to support ecological flow and their value 
for long-term food production. This analysis drew upon results of the 
connectivity model described above as well as a CONUS-wide data layer 
estimating productivity, versatility, and resilience (PVR; 10-m resolu-
tion) of agricultural lands circa 2016, which was developed as part of the 
FUT analysis described above (CSP, 2020; viewable at csp-fut.appspot. 
com). PVR quantifies the long-term sustainability of maintaining a 
given area in cultivation based on soil and land cover characteristics and 
the type of agriculture practiced at a given location. See Appendix A for 
further details. 

We masked the current flow and PVR datasets to only agricultural 
pixels and calculated quantiles of each dataset to identify pixels falling 
into ‘low’ (< 33 % quantile), ‘medium’ (33 % to 66 %), and ‘high’ (> 66 
%) categories for connectivity and PVR. Because some regions have 
generally higher connectivity or PVR values than others, calculation of 
quantiles was conducted separately for each ARS region across CONUS. 
Thus, both connectivity and PVR values are considered relative to other 
agricultural pixels in the same region. We used these quantile estimates 
to generate a pixel-level bivariate map in which each pixel on agricul-
tural land was ranked as ‘low’, ‘medium’, or ‘high’ for both connectivity 
and PVR. We used this map to link joint connectivity and food produc-
tion value with potential conservation opportunities across CONUS and 
provide examples of financial incentives administered by the USDA that 
could be applied to these opportunities. 

3. Results 

The importance of agricultural lands in facilitating the movement of 
organisms varied substantially across regions of the U.S. (Fig. 2, 
Table 1). At the ARS regional level, intensively cropped landscapes in 
the midwest (e.g., southern Minnesota, Iowa, and Illinois, Fig. 2) 
exhibited relatively high resistance to movement (Appendix D, Fig. D1) 
and low connectivity (Fig. 2, Table 1), while regions with extensive 
rangelands (e.g., central Nebraska, southwestern Texas) exhibited lower 
landscape resistance and were characterized by diffuse but relatively 
high current flow, comparable to natural landscapes in the western U.S. 
(e.g., central Nevada, northern Idaho; Fig. 2, Table 1). The plains region 
had the largest proportion of total land area in agriculture (70.0 %) and, 
consequently, the greatest contribution of agricultural lands to overall 
connectivity in the region - agricultural lands accounted for 17.6 % of 
top connectivity lands (i.e., lands in the top quartile of current flow, 
Appendix A) in the plains region (Table 1). 

Current flow on agricultural lands tended to be intermediate be-
tween current flow values of more developed landscapes (e.g., urban 
and suburban areas) and those of natural areas (including GAP 1 and 2 
protected areas; Fig. 3a). The amount of natural and developed land in 
the vicinity of agricultural lands substantially influenced the connec-
tivity value of individual agricultural pixels. Our top spatial error 
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regression model (Table D1, ΔAIC of next best model = 114.3) suffi-
ciently accounted for spatial autocorrelation in model residuals (Moran's 
I = − 0.03, p = 0.99) and included an interaction between agricultural 
cover type and the non-linear effects of surrounding land cover/use. 
Current flow values on all agriculture types were positively influenced 
by the amount of natural vegetation within 1 km (Fig. 3b, see also Fig. 2 

insets) and negatively influenced by the amount of developed land 
within 1 km (Fig. 3c). Current flow values from our comparison models 
were strongly correlated with those from our primary connectivity 
model, both within and across land cover/use types, indicating limited 
sensitivity of our model results to assumptions regarding resistance 
surface scaling and moving window size (Appendix C, Table C1). 

Mapping the combined rankings of current flow and PVR (Fig. 4) 
revealed that 2.7 % of all agricultural lands (10.2 million hectares 
[Mha]) have high values for both connectivity and PVR (i.e., within the 
top 33 % of agricultural lands in the same region; Table 2). The pro-
portion of lands in this ‘high-high’ category varied between ARS regions, 
being lowest in the Plains (1.3 %) and highest in the Northeast (5.8 %, 
Table 2, Fig. 4 inset). Areas of low connectivity (i.e., values in the bot-
tom 33 %) and high PVR were more common overall, accounting for 
21.3 % of all agricultural lands across CONUS (81.3 Mha), followed by 
areas of high connectivity and low PVR (15.5 %, 59.3 Mha) and areas in 
the lowest category for both connectivity and PVR (4.2 %, 16.2 Mha; 
Table 2). 

4. Discussion 

Our results highlight the potential for agricultural lands across the U. 
S. to provide important movement routes for terrestrial species, 

Fig. 2. Map of connectivity (current 
flow) across the conterminous United 
States. Insets show details of agricultural 
landscapes with high connectivity value 
in (i) the central Midwest (northern Mis-
souri) and (ii) the coastal Northeast 
(Delmarva peninsula, near the border of 
Maryland, Delaware, and Pennsylvania), 
where the persistence of patches of nat-
ural vegetation (forest fragments and 
strips of riparian or coastal vegetation) 
positively influence the current flow 
values of neighboring agricultural lands.   

Table 1 
Summary of connectivity on agricultural lands by Agricultural Research Service 
(ARS) region. Percent in agriculture: amount of total land area in the region 
categorized as cropland, pasture, rangeland, or woodland. Current flow on agri-
cultural lands: mean (standard deviation) of current flow across all agricultural 
pixels in the region. Agriculture contribution to top connectivity areas: proportion of 
top lands for connectivity in the region (i.e., those with current flow values 
falling within the top quartile for the region) occurring on agricultural lands. 
ARS regions are shown in Fig. 1a.  

ARS 
region 

Percent in 
agriculture 

Current flow on 
agricultural lands 

Agriculture contribution to 
top connectivity areas 

Midwest 51.2 % 92.0 (53.3) 6.2 % 
Northeast 21.1 % 116.1 (65.1) 0.5 % 
Pacific 29.5 % 160.2 (92.1) 0.5 % 
Plains 70.0 % 177.8 (93.0) 17.6 % 
Southeast 30.3 % 114.6 (70.2) 1.2 %  
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supporting connectivity through otherwise heavily modified landscapes. 
Current flow through agricultural pixels depended strongly on the type 
of agriculture practiced at a given location and the intensity of human 
land use in the surrounding landscape. Generally, agricultural lands 
supported greater current flow than developed areas, highlighting their 
importance as multifunctional landscapes that can support food pro-
duction while also acting as corridors linking areas of high-quality 
habitat. Our connectivity analysis was largely insensitive to assump-
tions regarding resistance surface scaling and moving window size, 
suggesting that these results can be generalized across a range of species 
that vary in their movement capacity and sensitivity to anthropogenic 
disturbance. As the human footprint continues to expand, moderately 

impacted landscapes such as agricultural fields and grazing lands will be 
increasingly important movement habitat for many species (Suraci et al., 
2020). Identifying conservation opportunities on agricultural lands is 
therefore critical to preventing further biodiversity loss while promoting 
long-term food security (Kremen and Merenlender, 2018; Leclère et al., 
2020). 

Our maps reveal that landscapes ranking in the highest quantile for 
both connectivity and PVR constitute 10.2 Mha (approximately 3 %) of 
agricultural lands across CONUS. These areas represent key opportu-
nities for ‘land-sharing’ programs that promote biodiversity and food 
production on the same land holdings (Fischer et al., 2008, 2014; Kre-
men, 2015; Garibaldi et al., 2021) by incentivizing wildlife-friendly 

Fig. 3. Current flow across land cover/use categories. (a) The range of current flow values on agricultural lands (cropland, pasture, rangeland, woodland, and all 
agricultural categories combined [‘all ag’]) is compared to that of developed areas and landscapes characterized by more natural land cover (i.e., all natural lands and 
lands within USGS GAP 1 and GAP 2 protected areas). Data are summarized as standard boxplots with whiskers representing 1.5 times the interquartile range. 
Outliers are excluded for clarity (see Appendix D, Fig. D2 for a version with all outliers shown). Current flow values on agricultural land cover types are influenced by 
surrounding land cover/use, including the amount of (b) natural lands and (c) developed lands within 1 km. Fitted lines in b and c show the mean relationship 
between surrounding land cover and current flow as estimated by a spatial error model. For clarity, a randomly selected subset (n = 800) of data points used in the 
analysis are shown. 
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farming practices (e.g., USDA's Conservation Stewardship Program and 
Environmental Quality Incentives Program [EQIP]) and protecting 
agricultural lands against conversion to more intensive land uses (e.g., 
USDA's Agricultural Conservation Easement Program [ACEP]). 
Increasing the capacity for farmland in this ‘high connectivity-high PVR’ 
category to support native species and wildlife movement - for instance, 
by planting non-crop vegetation strips along field edges and increasing 

crop diversity (Kremen et al., 2012) - may be critical for preserving 
connectivity in some areas of the U.S. and is consistent with recent 
proposals to increase conservation efforts on private lands (e.g., the 
Biden administration's commitment to conserve 30 % of U.S. lands by 
2030; Exec. Order No. 14008, 2021). Importantly, recent work has 
shown that incorporating such wildlife-friendly farming practices can 
stabilize (Gaudin et al., 2015) or even increase agricultural yields 

Fig. 4. Map of agricultural lands ranked based on quantiles of connectivity (i.e., current flow) and productivity, versatility, and resilience (PVR), a measure of 
agricultural land quality. White lines indicate the boundaries of Agricultural Research Services (ARS) regions, within which quantiles of connectivity and PVR were 
calculated (color scales are therefore relative to other pixels in the same ARS region). Non-agricultural land cover/use types are shown in black. The insets show 
details of agricultural landscapes with high connectivity value and either high or low PVR, and correspond to those shown in Fig. 2. The central Midwest landscape (i) 
is characterized by relatively high connectivity value but low PVR (deep blue color). The northern end of the Delmarva Peninsula (ii) has large amounts of land with 
high connectivity and high PVR (maroon color). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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(Pywell et al., 2015), setting up the potential for biodiversity and food 
production ‘win-wins’ (Mitchell et al., 2013). 

Our model results also identified substantial amounts of agricultural 
land across CONUS that are of high value for either connectivity (i.e., 
high connectivity-low PVR; 59.3 Mha in total) or food production (i.e., 
low connectivity-high PVR; 81.3 Mha) but not both. Such landscapes are 
particularly common in the Plains region, where large expanses of land 
with high PVR are devoted to intensive crop production (thus limiting 
current connectivity value), but are interspersed with areas of less 
intensive agriculture on lower productivity lands. Increasing the het-
erogeneity of these intensively farmed, lower connectivity landscapes 
(e.g., through crop diversification, native revegetation, etc.) will be 
critical to supporting the long term resilience and sustainability of these 
important food production areas (Fischer et al., 2017; Frei et al., 2020), 
and our maps can be used to identify regions of the country where such 
diversification efforts are most pressingly needed. Additionally, these 
landscapes may be good candidates for a combination of management 
policies that reflect a ‘land-sparing’ conservation strategy (Phalan et al., 
2011; Grass et al., 2019). Lands in the ‘low connectivity-high PVR’ 
category could be targeted for programs that keep lands in production 
and protect against conversion to development (e.g., ACEP), as well as 
those that incentivize agricultural practices that enhance the long-term 
sustainability of these high-productivity landscapes (e.g., USDA's Con-
servation Stewardship Program [CSP]). Meanwhile, neighboring areas 
in the ‘high connectivity-low PVR’ category could be maintained as low- 
intensity agriculture (pasture or rangelands) through enrollment in 
programs that support grazing (e.g., EQIP, CSP or USDA's term-limited 
Grasslands Conservation Reserve Program) and/or through permanent 
easements (e.g., via ACEP). Where appropriate, such areas could also be 
considered for removal from production in favor of ecological restora-
tion to support habitat and movement of native species (e.g., through 
USDA's Conservation Reserve Enhancement Program). Under such a 
conservation strategy, high-connectivity lands maintained as low- 
intensity agriculture or removed from agriculture altogether can act as 
connectivity ‘stepping stones’ (Wimberly et al., 2018; Doherty and 
Driscoll, 2018) to support species movement through otherwise inten-
sively managed landscapes and connect larger patches of high-quality 
habitat (e.g., protected areas). It is critical that any such land-sparing 
strategy be implemented at a relatively large spatial scale (i.e., across 
multiple land holdings within a region) to ensure sufficient connectivity 
across a network of ‘spared’ habitat patches to support dispersal and 
patch colonization and to prevent isolation of the larger natural land-
scapes that such habitat patches connect (Lamb et al., 2016; Grass et al., 
2019). 

Despite frequently being presented as a dichotomy, land sharing and 
land sparing actually represent a range of conservation strategies, and 
elements of each will be required to create heterogeneous agricultural 
landscapes that support regional-scale connectivity and enhance the 
resilience of agroecosystems (Kremen and Merenlender, 2018; Grass 

et al., 2019; Frei et al., 2020). An important next step will be to build on 
the localized recommendations provided here (i.e., relative value of a 
given location for connectivity and productivity) to identify the com-
bination of land sharing and sparing strategies that will be most effective 
at balancing biodiversity and sustainable food production across a given 
region. For instance, identifying the spatial arrangement of conservation 
actions that maximize regional-scale connectivity while maintaining or 
enhancing agricultural productivity could be achieved using multi- 
objective optimization approaches that allow for the systematic com-
parison of a large number of alternative management plans (Dilkina 
et al., 2017; Gupta et al., 2019). Developing regional, optimization- 
based planning tools that build on our approach and models would be 
valuable in supporting the targeted, landscape-scale conservation ac-
tions undertaken by a range of organizations, from local land trusts (e.g., 
guiding land acquisition and conservation strategies) to federal agencies 
(e.g., informing where USDA's National Resources Conservation Service 
prioritizes conservation incentives and easements). 

Spatial context plays a substantial role in determining the connec-
tivity value of agricultural lands. Our spatial regression analysis showed 
that, regardless of agriculture type, current flow on agricultural pixels 
was highest when those pixels were embedded in a broader landscape 
consisting of large amounts of natural land cover. This finding is 
consistent with previous work showing that biodiversity in agricultural 
systems tends to be higher in heterogeneous landscapes consisting of a 
mix of agricultural and non-agricultural cover types (e.g., crop fields and 
pastures interspersed with woodlots and riparian buffers) (Donald and 
Evans, 2006; Fahrig et al., 2011; Reynolds et al., 2018; Kremen and 
Merenlender, 2018). By promoting connectivity, the presence of natural 
land cover in agricultural systems can also directly benefit food pro-
duction, providing ecosystem services such as pollination and biological 
pest control through the (re)colonization and spillover of service- 
providing organisms from natural to cultivated patches (Blitzer et al., 
2012; Kormann et al., 2016; Grass et al., 2019). Therefore, maintaining 
or restoring natural vegetation within agricultural systems is likely to 
have benefits across scales, promoting biodiversity and the provisioning 
of ecosystem services at the local level of individual farms while facili-
tating regional-scale connectivity across networks of working lands and 
protected areas. 

Species-agnostic connectivity models such as the one used here are 
known to perform well in terms of their overlap with focal species 
connectivity models (Krosby et al., 2015) and provide the additional 
advantage of facilitating large scale conservation planning with the 
potential to benefit a range of species (Dickson et al., 2017; Schloss et al., 
2022). However, it is important to note that our model was not cali-
brated to the movement or habitat preferences of any particular focal 
species and thus may not fully capture the best movement pathways for 
a given species of interest. An important next step for connectivity 
conservation on agricultural lands will be to adapt the methods devel-
oped here in building connectivity models for focal species of conser-
vation concern. Our NDVI-based approach to capturing variation in 
management intensity within a given agricultural cover type could 
readily be adapted to focal species functional connectivity models. Re-
searchers can use species distribution models (Keeley et al., 2016) or 
resource selection functions (Zeller et al., 2014) to quantify the effect of 
agricultural management intensity on species habitat suitability or 
probability of use and translate these values into landscape resistance 
(Zeller et al., 2012; Suraci et al., 2020). Such efforts will be important for 
species-level management and will likely reveal substantial variability 
in the capacity of agricultural lands to provide habitat value for indi-
vidual species (Phalan et al., 2011; Reynolds et al., 2018). Accounting 
for temporal (e.g., seasonal) dynamics in connectivity on agricultural 
lands represents another crucial area of future research (Zeller et al., 
2020). In most systems, the intensity of agricultural management varies 
substantially throughout the year, which will interact with annual pat-
terns of dispersal and migration for agriculture-associated species to 
determine the resistance that agricultural lands impose on movement. 

Table 2 
Total area (Mha) and percentages of agricultural lands in each Agricultural 
Research Service (ARS) region falling into high (i.e., values within the top 33 % 
of all agricultural lands in the same region) and low (values in the bottom 33 %) 
rankings for connectivity and PVR. Values are also given for all regions com-
bined (i.e., all agricultural lands across the conterminous United States). ARS 
regions are shown in Fig. 1a.  

ARS 
region 

High 
Connectivity 
High PVR 

High 
Connectivity 
Low PVR 

Low 
Connectivity 
High PVR 

Low 
Connectivity 
Low PVR 

Midwest 3.2 (4.3 %) 13.8 (18.8 %) 10.3 (14 %) 2.7 (3.6 %) 
Northeast 0.8 (5.8 %) 1.7 (12.1 %) 2.5 (17.1 %) 1.3 (9.4 %) 
Pacific 1.7 (3.0 %) 9.4 (17.0 %) 12.6 (22.7 %) 2.9 (5.2 %) 
Plains 2.6 (1.3 %) 29.2 (14.4 %) 48.5 (24 %) 5.7 (2.8 %) 
Southeast 2.0 (5.6 %) 5.2 (14.4 %) 7.5 (20.8 %) 3.5 (9.8 %) 
All regions 10.2 (2.7 %) 59.3 (15.5 %) 81.3 (21.3 %) 16.2 (4.2 %)  
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Given the large spatial scale of our analysis (i.e., all of CONUS) and 
the necessity of drawing on general but widely available datasets like 
NDVI, our model was likely unable to capture all features of agricultural 
landscape complexity that may be relevant to species movement (e.g., 
pesticide use, crop diversity, field size). For instance, while our model 
highlights patches of natural vegetation interspersed with cropland and 
pasture (e.g., remnant forest patches and riparian corridors) as key 
connectivity areas, smaller scale linear features that may either support 
movement (e.g., hedgerows) or impede it (e.g., fencelines) (Davies and 
Pullin, 2007; McInturff et al., 2020) may not be fully represented at the 
scale of our analysis. Additionally, our metric of agricultural manage-
ment intensity (cvNDVI) provides a substantial improvement on previ-
ous analyses of agricultural connectivity that consider all pixels of a 
given cover class to be equally resistant (Fahrig et al., 2011). However, 
cvNDVI can only capture those aspects of agricultural management that 
result in variation in vegetation cover and is of course an imperfect 
predictor of even those aspects (see variation in relationship between 
cvNDVI and nitrogen fertilizer use; Appendix B, Fig. B2). Therefore, an 
important next step will be to adapt the procedures developed here to 
regional-scale analyses for agricultural areas of particular concern, as 
described above, which will allow for the integration of more localized 
information on agricultural management and its impacts on wildlife 
movement. 

We expect that our results will be useful in prioritizing conservation 
actions across a range of scales. At the local level, farmers, land trusts, 
and conservation advocates can use information on the joint value of 
agricultural lands for connectivity and food production to identify the 
landscapes in their region that are most suitable for meeting conserva-
tion goals (e.g., establishment of conservation easements) and to explore 
the types of conservation-focused financial incentives and programs 
applicable to the landscapes they work in. At the state and federal levels, 
agencies tasked with administering agriculture conservation programs 
can use these results to better target funding to areas likely to have the 
greatest impact for promoting biodiversity and food security, ideally 
employing a landscape-scale approach that leads to heterogeneous 
agricultural-natural mosaics that benefit both producers and native 
species (Kremen et al., 2012). To help facilitate planning and conser-
vation action based on our results, we have developed an interactive 
web application (https://csp-inc.org/ag-connectivity), allowing users to 
visualize the spatial data developed here within their regions of interest. 
We hope that these tools can contribute to a collaborative process be-
tween landowners, governments, and conservationists to design land-
scapes that support both native species and a sustainable food supply. 
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