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Abstract: Despite frequently being implicated in species declines, agricultural lands may nonetheless
play an important role in connecting wildlife populations by serving as movement corridors or
stopover sites between areas of high-quality habitat. For many North American bird species, agri-
cultural intensification over the past half century has substantially impacted populations, yet recent
studies have noted the potential for supporting avian biodiversity on agricultural lands through the
promotion of functional connectivity. To support avian conservation efforts on agricultural lands
across the United States, we used publicly available data from eBird to quantify and map the effects
of agriculture on habitat suitability (using random forest models) and functional connectivity (via
circuit theory) for three focal species that have experienced agriculture-linked declines or range
contractions in recent decades: Greater Sage-grouse (Centrocercus urophasianus), American Black Duck
(Anas rubripes), and Bobolink (Dolichonyx oryzivorus). Our analysis drew on novel, remotely sensed
estimates of agricultural management intensity to quantify the effects of management practices on
avian habitat and movement, revealing complex, species-specific relationships between agriculture
and habitat value for the three focal species. Rangelands and croplands exhibited relatively high
connectivity values for Greater Sage-grouse and Bobolink, respectively, mirroring these species’
strong habitat preferences for open sagebrush and cultivated grasslands. By contrast, American Black
Duck migratory connectivity was low on all agricultural cover types. Mapping our model results
across each species’ geographic range in the U.S. revealed key areas for agricultural management
action to preserve high-quality habitat and connectivity, and we link these spatial recommendations
to government incentive programs that can be used to increase wildlife-friendly management on U.S.
agricultural lands.

Keywords: Greater Sage-Grouse; American Black Duck; Bobolink; random forest model; circuit
theory; agroecology; conservation planning

1. Introduction

Agricultural lands (cropland, pasture, and rangeland) account for almost half of
the land area of the conterminous United States [1] and are frequently implicated in
species declines through habitat loss and fragmentation, pesticide use, and the impacts
of mowing and harvest [2,3]. Historically, when modeling the impacts of agriculture
on wildlife, agricultural lands have been lumped into broad categories (e.g., “cropland”
versus “grazing land”). However, the effects of agriculture on wildlife populations vary
considerably depending on the type of agriculture, management practices, and the ecology
and life history of the species concerned. For some species, agricultural lands may provide
important foraging or breeding habitat [4,5] or serve as movement corridors through more
heavily modified landscapes [6,7], whereas for other, more sensitive species, agriculture
may impose hard barriers to movement [8,9], potentially driving population declines
through habitat fragmentation. Indeed, when connectivity models incorporate a more
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nuanced parameterization of agricultural lands based on field data for the target species,
the results, and hence the management implications, can change [10].

Avian species range considerably in their capacity to use the agricultural landscape as
primary or movement habitat. Agricultural intensification across North America has been
a major driver of declines in farmland-associated bird species since the middle of the last
century [3]. However, recent studies have noted the potential for supporting avian biodi-
versity on agricultural lands through wildlife-friendly farming practices and the promotion
of functional connectivity across agricultural and mixed-use landscapes [11–13]. Identi-
fying opportunities to support bird species habitat use and connectivity on agricultural
lands is therefore an important conservation objective. Here, we examine the effects of
agriculture on habitat suitability (as estimated by species encounter rates) and functional
connectivity for three avian focal species that exemplify the complex effects of agriculture
on species habitat use, movements, and populations: the Greater Sage-grouse (Centrocercus
urophasianus; hereafter, sage-grouse), the American Black Duck (Anas rubripes; hereafter,
black duck), and the Bobolink (Dolichonyx oryzivorus).

These three focal species were selected due to their management relevance (all three
are experiencing range contraction and/or population declines, see below) as well as
to capture the diversity of agriculture-avian species interactions, which range from an
avoidance of agricultural lands through occasional use to specialization during particular
life history stages. The sage-grouse is experiencing ongoing loss of habitat due to the
conversion of their required sagebrush (Artemisia spp.) habitat to agricultural and other
land uses, habitat degradation from intensive grazing [14], and the spread of invasive
annual grasses and conifer encroachment on western rangelands, which perpetuate rapid
fire cycles and lead to the loss of sagebrush cover [15]. Despite grazing impacts, rangelands
across the sage-grouse’s extant range are thought to provide important movement habitat
and are typically less strongly avoided than cultivated croplands [16]. The black duck, once
the most common waterfowl species in Eastern North America, has experienced substantial
declines since the mid-20th century [17]. The conversion of wetland habitat to agricultural
and urban uses has been a major driver of declines for this and many wetland-dependent
species [18]. However, in recent years, emerging evidence has shown that agricultural
lands may provide important wintering and/or nesting habitat for black duck populations,
with food availability in agricultural fields partially compensating for the loss of preferred
wetland foraging habitat [17,19,20]. The Bobolink historically nested in native grasslands in
the Northern U.S. and Southern Canada [21]. Bobolinks have also experienced substantial
population declines (>70% decline since 1968) linked to agricultural intensification [3]. With
the loss of native grasslands in North America, the majority of Bobolink breeding now
occurs in pastures and grain fields [21], and major ongoing threats to Bobolink populations
are linked to the intensity of agricultural management in these systems, i.e., the frequency
and intensity of cutting, harvesting, and grazing [22].

The three focal species differ substantially in their life history and movement character-
istics, and thus in their use of agricultural and other modified landscapes for connectivity.
The sage-grouse is the least vagile of the three species, consisting of a mixture of resident
and migrant populations that move relatively short distances (up to ~120 km) [16,23]. The
relatively limited movement of sage-grouse, combined with the isolation of remnant habitat
patches, has resulted in restricted gene flow between populations [14,24], which highlights
the importance of maintaining and restoring connectivity across the sage-grouse range.
For the present analysis, we examined sage-grouse habitat suitability and connectivity
across the species’ range during all seasons to quantify agricultural impacts on movements
associated with migration as well as natal and breeding dispersal. The black duck exhibits
intermediate movement capacity, with most populations undertaking seasonal migrations
between the Southeastern U.S. and the Northeastern U.S. and Canada, with up to five
stopovers during the migration [25,26]. Here, we examined the effects of agricultural land
use on the suitability of and connectivity between potential black duck stopover sites
during spring and fall migration, focusing our analyses on movements occurring between
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migration start and end dates. The most vagile focal species is the Bobolink, a neotropical
migrant that transits between breeding grounds in North America and wintering grounds
in Central and South America, a migration that includes trans-oceanic non-stop flights
of up to 3500 km [27]. Given their capacity for long-range movements, Bobolink migra-
tory connectivity may be only minimally impacted by localized human land uses (e.g.,
agriculture). Bobolinks show high breeding site fidelity when returning from wintering
grounds, but adults and especially fledglings may make exploratory movements within
a breeding season to assess potential new breeding sites for the subsequent year. These
within-breeding season movements—either natal dispersal outside a parent’s territory or
dispersal by breeding adults after a failed nesting attempt—are likely to be substantially
shaped by local/regional landscape characteristics and, in particular, the intensity of agri-
cultural management [4,28]. We therefore focused our Bobolink analysis on the effects of
agricultural land uses on breeding season habitat suitability and connectivity during these
exploratory movements.

For each focal species, we conducted U.S. range-wide analyses of both habitat suitability
and connectivity. More so than our other focal species, the sage-grouse has been the subject
of extensive conservation-focused research, including recent connectivity studies to inform
sage-grouse management [29,30]. Here, we expand on this body of work by explicitly
focusing on the effects of agricultural management on sage-grouse habitat and connectivity.
To place our findings in the broader context of sage-grouse management-focused analyses,
we quantitatively compare our connectivity results to those of existing models and discuss the
complementarity of results across studies. For all focal species, we discuss the implications
of our models for species habitat management in agricultural landscapes.

2. Methods

For each focal species, our basic workflow involved using detection data from eBird,
the Cornell Lab of Ornithology’s community science platform [31,32], to model habitat
suitability via random forest models and then using the resulting habitat suitability surface
as input to a circuit theory-based connectivity model. This workflow is outlined in Figure 1
and described in detail below.
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2.1. Focal Species Data

We obtained eBird data for each of our three focal species. eBird data were organized
into “checklists,” semi-structured surveys in which the observer records the observed
species as well as variables associated with observation effort (e.g., distance traveled, num-
ber of observers). Datasets made available for use in research are subject to a rigorous
pre-screening procedure (e.g., to remove false positives) and can be filtered to only include
“complete” checklists, i.e., those in which the observer self-reports as having recorded all
bird species detected [32]. By using only complete checklists, eBird data provide infor-
mation on both the detections and non-detections of focal species, as non-detections are
inferred from complete checklists in which the focal species is not observed [32]. Here,
we used data from the November 2021 release of the eBird basic dataset (EBD), avail-
able at www.ebird.org/science/download-ebird-data-products (accessed on 5 January
2022). Following Strimas-Mackey et al. [34], we filtered the EBD to only include complete
checklists and we reduced variation in sampling effort by only retaining checklists with
≤ ten observers, duration of ≤ 5 h, and a total travel distance of ≤ 5 km. We then created
focal species datasets from the filtered EBD by retaining all checklists (both detections
and non-detections) within each species’ geographic range. We used range maps from
the International Union for the Conservation of Nature (IUCN) for each of the three focal
species [35–37], clipped to the borders of the conterminous U.S. Finally, we truncated each
species-level dataset to only include data collected between 2014 and 2018 in an effort to
align detection data with the year of our agricultural and other human land use intensity
covariates (2016, see below). As noted above, for the sage-grouse, we modeled habitat
suitability and connectivity across all seasons, and therefore retained all checklists between
2014 and 2018. Our black duck models focused on connectivity between stopover sites
during annual migration. We therefore truncated our black duck dataset to include only
detections and non-detections occurring between the minimum start date and maximum
end date for both spring and fall migration (spring migration: 18 April to 28 June; fall
migration: 5 October to 18 December [25]). To examine within-breeding season connectivity
for Bobolink, we truncated our Bobolink dataset to only those checklists occurring between
the beginning and end of the breeding season (1 May to 14 September [22,27]).

Community science data are known to be subject to several challenges, including
spatial and temporal bias (e.g., tendencies for community members to conduct sampling
close to home and/or only in favorable seasons [31,38,39]) and class imbalance (a tendency
for non-detections to substantially outnumber detections, particularly for rare species [40]).
To deal with these potential issues, we conducted spatial or spatiotemporal subsampling
for each focal species [32,34]. Of the three focal species, sage-grouse had the most lim-
ited geographic range, as well as the smallest total number of checklists and the lowest
percentage of detections relative to non-detections (0.3% of 321,034 checklists). Given the
relatively limited amount of available information on where sage-grouses are present, we
followed guidance in Robinson et al.’s work [40], retaining all checklists in which sage-
grouse were detected and spatially subsampling non-detection checklists by randomly
selecting a single non-detection checklist within each cell of a 10 × 10 km grid overlaid
across the sage-grouse’s geographic range. This resulted in a total of 1277 detection and
2782 non-detection checklists (nominal 31.5% detection rate). Both black duck and Bobolink
have much larger geographic ranges and a substantially larger number of eBird checklists.
We therefore performed spatiotemporal subsampling of all checklists for each species,
randomly selecting one detection and one non-detection checklist for each year of the study
(2014 to 2018) within each cell of a 20 × 20 km grid overlaid across each species’ geographic
range (note the larger grid cell size relative to sage-grouse to accommodate the much
larger geographic ranges of black duck and Bobolink). This resulted in 7140 detection and
38,514 non-detection checklists for black duck (18.5% detection rate) and 11,335 detection
and 46,663 non-detection checklists for Bobolink (24.3% detection rate). We prepared eBird
datasets using the auk package [41] in R [42].

www.ebird.org/science/download-ebird-data-products
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2.2. Model Covariates

For each focal species, we modeled habitat suitability as a function of several environ-
mental and climatic covariates described in detail below (see also Table 1). Following the
best practices for research with eBird data, we quantified all covariates within a 2.5 km
radius of each checklist location, corresponding to the spatial precision of the species detec-
tion data (maximum travel distance for checklists included here = 5 km) and representing
an ecologically relevant scale for many bird species [32,34]. Covariate values for each check-
list location were calculated as either the mean value or percent cover within the specified
radius and were derived by first calculating the focal mean (for continuous covariates) or
focal sum (for binary covariates) at each pixel using circular kernels with a 2.5 km radius
and then extracting these smoothed values for the pixel associated with each checklist loca-
tion. To facilitate prediction from habitat suitability models, we also extracted smoothed
values of all relevant covariates at all pixels within a 250 m × 250 m grid spanning each
species’ geographic range, buffered by the relevant movement distance for each species
(see connectivity modeling section below for more on relevant movement distances).

To estimate the impacts of human modification, and in particular agricultural man-
agement intensity, on species habitat suitability and connectivity, we quantified mean
human land use intensity, L, around each detection and non-detection location for each
focal species. We used the L layers described in Suraci et al. [1] (see also [43]) which were
derived based on a procedure originally developed by Theobald [44]. These L layers in-
tegrate multiple datasets to estimate the intensity of land use at each location (i.e., raster
pixel) across the landscape for four categories of human modification: urbanization (in-
cluding data on residential development and nighttime lights), transportation (including
roads, railways, powerlines, and pipelines), energy (including oil and gas wells, coal mines,
and utility-scale solar and wind installations), and agriculture. For agricultural land use
intensity, we constructed a novel L layer that incorporates high-resolution (10 m) data
on agricultural land cover/use circa 2016 developed for the American Farmland Trust’s
Farms Under Threat (FUT) analysis [45]. The FUT analysis integrated data from the 2016
National Land Cover Database (NLCD) [46], the US Department of Agriculture’s Natural
Resources Inventory [47], and several other US soil and land use databases (see [45] for
details) to categorize all agricultural lands into one of four classes: cropland (areas used
for the production of crops for harvest, including row crops and hayland), pasture (areas
used primarily for growing introduced forage plants for livestock grazing), rangeland (areas
composed primarily of native plants and/or non-cultivated introduced forage species used
for livestock grazing or browsing), and woodland (natural or planted forest cover that is
part of a functioning farm unit and no further than 160 m from cropland or pasture). As
described in detail by Suraci et al. [1], the agricultural L layer incorporated novel estimates
of agricultural management intensity on all cropland and pasture pixels based on variation
in remotely sensed vegetation cover over five growing seasons (2014–2018). Variation in
vegetation cover was estimated using a timeseries of normalized difference vegetation
index (NDVI) values from NASA’s MODIS system (MOD13Q1 products). Elsewhere, we
have shown that our estimates of vegetation cover variation correlate strongly with other
indicators of agricultural management intensity (e.g., fertilizer use, irrigation) and allow us
to discriminate between pixels of the same agricultural cover type in terms of their potential
impacts on wildlife movement [1]. L values for each land use category range between 0
and 1 and are based on underlying datasets quantifying human land use circa 2016. For the
present analysis, we extracted values from each of the four L layers at each eBird checklist
location, allowing us to consider, e.g., the effect of agricultural land use intensity on species
habitat suitability separately from that of other land use categories.

For all species, we included topographic covariates in habitat suitability models,
including mean elevation, slope, aspect, and ruggedness (an estimate of the variability in
slope and aspect within a given neighborhood). All topographic variables were calculated
using the ALOS World 3D Digital Surface Model (30 m resolution [48]). Ruggedness was
estimated using the vector ruggedness metric (VRM) with a window size of 1 km [49]. For
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each focal species, we also included one or more land cover covariates describing habitat
types known to be important to that species. Sage-grouse are dependent on sagebrush
habitat [23,50,51] and we therefore included the percent cover of sagebrush, using the
LANDFIRE v2.0 Existing Vegetation Type (EVT) dataset (30 m resolution [52]) filtered
to only those cover types with “sagebrush” in the EVT name. Black ducks are strongly
associated with coastal and inland aquatic habitats for both nesting and foraging, including
open water (lakes, ponds, rivers), wetlands, and tidal flats [17,19,20,53]. We used the 2016
NLCD to quantify the percent cover of open water (NLCD code 11), all wetlands (90,
95), and herbaceous wetlands (95), isolating the latter category because of the potential
importance of herbaceous wetlands in providing emergent vegetation on which black ducks
can forage [17]. We also quantified the percent cover of tidal flats circa 2015–2016 using the
dataset developed by Murray et al. [54]. Bobolinks breed in grasslands and agricultural
fields (pastures), and tend to avoid other cover types such as forested areas [21,22,55]. We
used the NLCD to calculate percent cover of forests (NLCD codes 41–43) and shrublands
(52). To develop a comprehensive estimate of grassland percent cover, we combined the
footprints of the NLCD grassland and pasture/hay classes (71, 81) with that of pastures
identified by the Farms Under Threat 2016 land cover layer [45].

Finally, we included one or more climate covariates for each focal species, with all
climate covariates derived from NASA’s Daymet v4 dataset [56]. For sage-grouse, we
included mean daily snow water equivalent during winter months (1 November to 1
April), as snow cover can limit sage-grouse access to forage [23,57]. For sage-grouse and
Bobolink, we included the mean daily minimum and maximum temperatures, and for all
three species, we included mean daily precipitation. Because the majority of black duck
detections occurred within the northern portion of their range, temperature covariates
were largely confounded with latitude in model predictions, leading to predicted suitable
habitat that was largely confined to northern areas and thus limiting our ability to analyze
connectivity across the black duck’s entire U.S. range. We therefore excluded temperature
covariates from the black duck model and relied instead on land cover/use and precipita-
tion, which is appropriate given their reliance on aquatic habitats. We calculated average
daily minimum and maximum temperatures and average daily total precipitation across
the entire year for sage-grouse. For black duck and Bobolink, we calculated means during
the focal periods (i.e., spring/fall migration and breeding season, respectively). We ex-
tracted climate variables for the relevant periods between 2014 and 2018, corresponding to
the timespans of the eBird detection datasets described above. Table 1 provides a summary
of all covariates and the models in which they were used. All covariates were compiled,
processed, and exported at 250 m resolution using Google Earth Engine (GEE) [58]; and the
GEE Python API.

Table 1. Descriptions of the spatial covariates used in random forest models for each focal species.

Covariate Name Source Date Native
Resolution Predictor Type Sage-

Grouse Black Duck Bobolink

Agricultural land use
intensity Suraci et al. 2023 2016 250 m focal mean x x x

Urban land use
intensity Suraci et al. 2023 2016 250 m focal mean x x x

Transportation land
use intensity Suraci et al. 2023 2016 250 m focal mean x x x

Energy land use
intensity Suraci et al. 2023 2016 250 m focal mean x x x

Elevation ALOS Global DSM
(AW3D) 1 2021 30 m focal mean x x x

Slope ALOS Global DSM
(AW3D) 2021 30 m focal mean x x x

Aspect ALOS Global DSM
(AW3D) 2021 30 m focal mean x x x
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Table 1. Cont.

Covariate Name Source Date Native
Resolution Predictor Type Sage-

Grouse Black Duck Bobolink

Ruggedness ALOS Global DSM
(AW3D) 2021 30 m focal mean x x x

Sage brush
LANDFIRE v2.0:

Existing Vegetation
Type 2

2016 30 m percent cover x

Water NLCD 2016 3 2016 30 m percent cover x x
Herbaceous wetlands NLCD 2016 2016 30 m percent cover x
All wetlands NLCD 2016 2016 30 m percent cover x
Forest NLCD 2016 2016 30 m percent cover x
Shrub NLCD 2016 2016 30 m percent cover x

Grassland NLCD 2016 & Farms
Under Threat 4 2016 30 m, 10 m percent cover x

Tidal flats Murray et al. 2019 2014–2016 30 m percent cover x
Snow-water
equivalent NASA Daymet V4 5 2014–2018 1 km focal mean x

Maximum
temperature NASA Daymet V4 2014–2018 1 km focal mean x x

Minimum
temperature NASA Daymet V4 2014–2018 1 km focal mean x x

Precipitation NASA Daymet V4 2014–2018 1 km focal mean x x x

1 Takaku et al. [48]; 2 LANDFIRE [52]; 3 Dewitz et al. [46]; 4 CSP [45]; 5 Thornton et al. [56].

2.3. Random Forest Models of Habitat Suitability

We fit random forest (RF) models to detection/non-detection data for each species to
predict the probability of encountering the species at a given location (i.e., “encounter rate”)
as a function of environmental and climatic covariates. RF models present several benefits
for ecological classification and prediction problems, including high classification accuracy
and the ability to deal with complex interactions and collinearity between covariates [59,60].
Following previous analyses [34,61–63], we considered encounter rate to be a proxy for
habitat suitability and used a suite of model covariates (described below) to correct for
potential variation in detection probability. The consideration of encounter rate as a proxy
for habitat suitability is based on the assumption that encounter rates will be higher where
species abundance/density is greater, and that density is positively associated with the
suitability of the habitat. While this is a common assumption in the species distribution
modeling literature [34,61–63], we acknowledge that encounter rate is an imperfect proxy
for habitat suitability and could potentially vary between habitats in ways that are not
strictly related to density if, for instance, a species is more cryptic in some habitats than
in others.

Our process for fitting RF models to eBird data closely followed that described by
Strimas-Mackey et al. [34]. For each species, we classified detection/non-detection data
based on the spatial covariates described in Table 1 as well as a suite of covariates accounting
for variation in detection probability between checklists [32]. These detection probability
covariates included checklist year, Julian date, start time, duration, total distance traveled,
and number of observers. Given that RF models have been shown to be robust to the
inclusion of low-importance covariates [60], we fit a single model for each focal species,
including all detection probability covariates and the environmental and climatic covariates
shown in Table 1. Prior to model fitting, we randomly split each species’ dataset into
training (80% of checklists) and test sets (20% of checklists), using the training sets to fit RF
models and the test sets to assess model accuracy. Using the ranger package [64] in R [42],
we fit RF models to training data for each species using 500 trees and partitioning based on
the Gini index [59]. To further reduce issues related to class imbalance, we used a balanced
random forest approach in which, for each tree, an equal number of bootstrapped samples
were selected from detections and non-detections [34]. We set the RF algorithm to predict
probabilities rather than binary classification [65], which in this case provides an estimate
of the encounter rate for the focal species at each checklist location. To validate our models,
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we quantified their ability to predict withheld test data using five validation metrics: mean
squared error, sensitivity, specificity, area under the receiver-operator characteristic curve
(AUC), and the kappa statistic [66]. We used partial dependence plots [59], which show the
marginal effect of a given covariate averaged across all other covariates, to visualize the
relationship between individual covariates and species encounter rates.

We used the validated RF models for each species and continuous rasters of spatial
covariates to predict encounter rate across each species’ geographic range (buffered by
relevant movement distance, see below). We treated these predictions as spatially explicit
estimates of habitat suitability, assuming that the probability of encountering a species will
be higher in more suitable habitat [34,61–63]. Following Strimas-Mackey et al. [34], we
accounted for detection probability in our habitat suitability surfaces by making predic-
tions for a “standard” eBird checklist (travel distance = 1 km, duration = 1 h, number of
observers = 1) in the year 2016 and setting the Julian date and checklist start times to those
with the highest detection probability for each species (sage-grouse: 18 March (lekking
season) at 05:02; black duck: 17 December (fall migration) at 05:05; Bobolink: 13 May at
05:05). Given that sage-grouse and black duck datasets spanned multiple seasons, we also
developed comparison habitat suitability surfaces for these two species based on detec-
tion probability in other seasons of the year (sage-grouse: 15 July (post-breeding season);
black duck: 19 March (spring migration)) to test model sensitivity to potential seasonal
differences in detection probability. Habitat suitability surfaces ranged between 0 and 1
and were derived at 250 m resolution.

We quantified the effect of season and agricultural land use intensity (L) on predicted
habitat suitability for each species by first sampling a large number of habitat suitability
values at random locations distributed across each species’ geographic range in the U.S.
The total number of points sampled was proportional to the total area of each species’
range, equaling approximately 5 random samples per 100 km2 (sage-grouse: n = 105,608;
black duck: n = 213,089; Bobolink: n = 236,833). For each species, we extracted the habitat
suitability (i.e., encounter rate) value at each random point from the predicted habitat
suitability surface based on the Julian date with highest detection probability. For the
sage-grouse and black duck, we additionally extracted habitat suitability values from
the comparison surfaces based on detection probability in other seasons of the year and
compared these predicted values between the two seasons for each species via Pearson’s
correlation coefficient. For all species, we also extracted the agricultural L value at each
random location and examined the relation between L and predicted habitat suitability by
first grouping L into equally spaced bins (i.e., L = 0 (no agriculture), 0 < L ≤ 0.25, 0.25 < L
≤ 0.5, 0.5 < L ≤ 0.75, 0.75 < L ≤ 1) and calculating the median habitat suitability value in
each bin.

2.4. Connectivity Modeling

We ran omnidirectional connectivity models for each focal species using the Om-
niscape algorithm [67,68], a circuit theory-based approach that models the movement of
animals across the landscape as the flow of electrical current through a circuit [69,70]. In cir-
cuit theory-based models, current flow provides an estimate of the probability or intensity
of the movement of organisms through each pixel on the landscape. Building from a circuit-
theoretic approach, the Omniscape algorithm allows every pixel in a landscape raster to
potentially serve as a source and/or target of movement, thus modeling current flow in
all directions. Inputs for Omniscape models include a source strength surface, describing
the predicted probability or intensity of movement from a given location, and a landscape
resistance surface, which estimates the difficulty an animal experiences in moving through
each pixel on the landscape. For each focal species, we used the habitat suitability surface
to define source strength, thresholding the layer to only those pixels with habitat suitability
greater than 0.2 to avoid treating the least suitable pixels as potential sources of animal
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movement [67]. Following Keeley et al. [33], we used a negative exponential function to
transform habitat suitability into landscape resistance, R, via

R = 100 − 99 ∗ ((1 − exp(−c ∗ h))/(1 − exp(−c)))

where h is the habitat suitability value at a given pixel and c is a constant that determines the
degree of nonlinearity between h and R. Lower values of c produce linear or nearly linear
relationships between h and R, while higher values of c produce increasingly non-linear
relationships such that resistance declines more quickly with increasing values of habitat
suitability. Following guidance from Keeley et al. [33], we chose a c value resulting in a
moderately non-linear relationship between h and R (c = 8) to reflect the fact that many
species are willing to move through otherwise relatively low suitability habitat, e.g., [71].

Omniscape employs a moving window approach in which each pixel in the source
strength layer with a value greater than zero is iteratively treated as a target for electrical
current. This target pixel is connected to all other non-zero pixels within the moving
window radius, which serve as current sources. The moving window radius thus sets the
maximum distance between movement start and end points. For each focal species, we
determined the moving window size based on the animal’s movement capacity and the
seasonal/life history period over which analyses were run, referred to elsewhere in the text
as the ‘relevant movement distance’. Because our sage-grouse model addressed all seasons
and movements, we treated the maximum observed movement distance in the literature
(120 km) [16,23] as the relevant movement distance. This distance also captures recorded
maxima for natal and breeding season dispersal [72,73]. For the black duck model, which
focused on connectivity between migratory stopover sites, we considered the relevant
movement distance to be 250 km, comparable to the average distance between stopover
sites for all populations monitored by Coluccy et al. [25]. For the Bobolink model analyzing
within-breeding season dispersal movements, we used the maximum observed distance
between breeding sites (or natal site and first breeding site) for a single individual, which
was approx. 10 km [4], as our relevant movement distance. Fajardo et al. [4] measured na-
tal/breeding dispersal distances as the distance between sites used in consecutive breeding
seasons (i.e., separated by migration to winter range and back). However, we assume here
that these distances are a reasonable approximation of the distances Bobolinks will travel
within a breeding season when undertaking exploratory movements to assess potential new
breeding sites [28]. Connectivity models were run in the Omniscape.jl software package in
Julia [68].

Following Suraci et al. [1], for each species, we compared current flow on agricultural
lands with current flow on other land cover/land use types by extracting current flow
values at each of the randomly sampled locations described above (sage-grouse: n = 105,608;
black duck: n = 213,089; Bobolink: n = 236,833). We classified each random point as falling
into one or more of the following categories: cropland, pasture, rangeland, woodland, or
all agriculture (i.e., any one of the previous four categories), based on the FUT 2016 land
cover layer described above [45]; developed, based on the 2016 NLCD [46] (NLCD classes
‘developed—open space’ and ‘developed—low intensity’, ‘developed—medium intensity’,
and ‘developed—high intensity’); natural land cover (all NLCD non-agricultural vegetation
categories, i.e., cover classes 41–74 and 90–95); and protected areas (all public lands in
the USGS Protected Areas of the US Database v2.1 [74] categorized as GAP status 1 or
2, i.e., permanently protected and managed for natural land cover). We also included a
subset of natural land cover relevant to sage-grouse (and potentially other focal species):
sagebrush/shrub, a combination of the LANDFIRE-based sagebrush layer (see above) and
the NLCD “shrub/scrub” class. Agricultural, developed, and natural land categories were
mutually exclusive, and we gave preference to FUT agricultural land cover classes where
these overlapped with low density development or natural lands. This meant that areas in
the Western U.S. classified as rangeland were excluded from the sagebrush/shrub category,
with the latter therefore capturing areas with relatively low grazing pressure. Natural land
cover classes were non-exclusive, with sagebrush/shrub being a subset of the broader natural
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category and with an extensive overlap between natural and protected areas. Random point
sampling and extraction were conducted in GEE.

2.5. Comparison with Existing Sage-Grouse Models

As noted in the Introduction, the sage-grouse has been the subject of extensive prior
conservation-focused analysis, including recent connectivity studies [29,30]. We compared
the results from our sage-grouse connectivity model with those of two existing circuit
theory-based sage-grouse connectivity analyses to evaluate agreement between models.
Crist et al. [29] used a network-based approach to examine connectivity between state-
defined sage-grouse priority areas, basing landscape resistance on an existing range-wide
model of sage-grouse habitat suitability. Row et al. [30] examined functional connectivity
across five sage-grouse management zones (constituting the majority of the sage-grouse
range), using a landscape genetic approach to estimate gene flow between sage-grouse lek
groups. To quantify model agreement, we first thresholded the sage-grouse connectivity
rasters from this analysis and from the two comparison studies to only those pixels in the
top 25% of current flow values (i.e., high connectivity areas, HCAs). We then compared the
spatial overlap between HCAs from our model with those of Crist et al. and Row et al. by
calculating the percent of our top pixels overlapping with the top pixels of the comparison
raster, and vice versa, clipping rasters so that the study extents matched. We conducted
our complementarity analysis using the raster package [75] in R and via ArcGIS Pro (V3.0.0;
Esri Inc., Redlands, California, USA, 2022).

3. Results

Our results highlight the complex and contrasting relationships between agricultural
land use intensity (L) and habitat suitability (estimated as encounter rate) for each species
(Figure 1). For sage-grouse, median encounter rate values, based on predictions from
an RF model using data across all seasons, were highest at relatively low, but non-zero,
values of agricultural L (Figure 2a), corresponding to low-intervention agricultural areas
such as private rangelands. Black duck migratory season encounter rates (Figure 2b) were
typically lower at all levels of agricultural L compared to areas without agriculture (i.e.,
where L = 0), suggesting that agricultural lands provide relatively poor stopover habitat
for black ducks. For Bobolink, median encounter rates during the breeding season were
highest at intermediate-to-high levels of agricultural L (Figure 2c), reflecting this species’
increasing dependence on cultivated landscapes for a nesting habitat.
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Figure 2. Median encounter rates for (a) Greater Sage-Grouse, (b) American Black Duck, and
(c) Bobolink within bins of progressively increasing agricultural land use intensity (L). Median values
are based on predictions from random forest models at thousands of random locations within each
species’ geographic range (see text for details).
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For all species, however, raw detection/non-detection data were relatively sparse at
higher levels of agricultural L (Figure S1), necessitating caution in interpreting results for
the most intensely managed agricultural landscapes. Our validation procedure indicated
that RF model predictive and discriminatory power was relatively strong for all species
(Table 2), being particularly high for sage-grouse, which may reflect this species’ relatively
limited geographic range and strong association with sagebrush habitat [23,51]. Sage-
grouse and black duck model predictions were relatively insensitive to differences in
detection probability between seasons (Figure S2), with predicted encounter rate values
from models based on different Julian dates being highly correlated (sage-grouse: detection
probability based on 18 March vs. 15 July, Pearson’s rho = 0.87; black duck: 17 December
vs. 19 March, rho = 0.84).

Table 2. Validation metrics for each of the focal species random forest models.

Mean Squared
Error Sensitivity Specificity AUC Kappa

Sage grouse 0.076 0.75 0.967 0.944 0.744
Black duck 0.118 0.637 0.916 0.899 0.528
Bobolink 0.153 0.621 0.852 0.831 0.435

Maps of habitat suitability and connectivity across each species’ geographic range
(Figure 3) highlight potential target areas for management action to preserve high-quality
habitat and connectivity within and among populations. Generally, year-round habitat
suitability for sage-grouse, as well as areas of the highest predicted probability of movement
(i.e., current flow) were concentrated in relatively flat, medium-to-high elevation (i.e.,
>1000 m) habitats with a high percent cover of sagebrush (Figure 3a,d). Habitat suitability
and connectivity for migrating black ducks was strongly associated with water, being
highest in coastal areas, along major river systems, and in the vicinity of the Great Lakes
(Figure 3b,e). Bobolink breeding habitat suitability and connectivity was relatively diffused
throughout the midwestern and northeastern regions of the U.S. (Figure 3c,f), reflecting
this species’ use of agricultural landscapes as a nesting habitat and a general avoidance of
forested areas for breeding.

For sage-grouse, the median current flow value on rangelands was higher than that on
most other land cover/land use types considered and comparable to median current flow
on non-rangeland sagebrush/shrub habitat (Figure 4a). In contrast, cultivated croplands,
which are typically characterized by substantially higher agricultural land use intensities
than the other agricultural cover types [1], were predicted to support among the lowest
levels of current flow for sage-grouse, compared to developed areas (Figure 4a). Our model
had moderately high agreement with existing sage-grouse connectivity models, with high
connectivity areas (HCAs, i.e., pixels with current flow values in the top quartile) predicted
by our model capturing approximately 65% of HCAs identified by both Crist et al. [29]
and Row et al. [30] (Table 3, Figure S3). HCAs identified by the two comparison models
captured 47–52% of the HCAs identified by our model.

Table 3. Percent agreement between high connectivity areas (HCA, i.e., pixels with current flow
values in the top quartile for a given model) predicted by our sage-grouse connectivity model (this
study) and those predicted by two existing sage-grouse connectivity models (comparison models).
Model agreement was calculated as both the percentage of HCA predicted by each comparison model
falling within HCA predicted by this study and the percentage of this study’s HCA falling within the
HCA of each comparison model.

Comparison Model Comparison Model HCA
within This Study’s HCA

This Study’s HCA within
Comparison Model HCA

Crist et al. 2017 64.6% 47.1%
Row et al. 2018 65.5% 52.4%
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Figure 3. Habitat suitability (as predicted from random forest models) and the predicted probability
of movement (i.e., current flow, as predicted from circuit theory-based connectivity models) for
Greater Sage-Grouse in all seasons (a,d), American Black Duck during spring and fall migrations
(b,e), and Bobolink during the breeding season (c,f). Model results are shown across each species’
geographic range in the U.S. (based on IUCN range maps, see text for details).

Current flow for migrating black ducks tended to be lowest on agricultural lands
relative to more developed or natural land cover/land use types (Figure 4b), though
woodlands—patches of remnant forest cover associated with a functioning farm unit where
management intensity is typically low—were predicted to provide some support for black
duck movement, as indicated by median current flow values. For Bobolink, croplands
exhibited among the highest median current flow values of any land cover/land use type
(Figure 4c), emphasizing the importance of cultivated landscapes for this species during
the breeding season. Our model predicted very low current flow values for Bobolink on
natural land cover types and within protected areas (Figure 4c), likely reflecting this species’
avoidance of forested habitats.

Current flow was high on developed lands for both black ducks and Bobolinks
(Figure 4b,c), suggesting substantial potential for movement through suburban and urban
landscapes. High predicted movement through developed areas (and correspondingly
high predicted habitat suitability, Figure 3b,c) could stem in part from the tendency of
community scientists to collect data in or near the cities in which they live. However, com-
paring detection/non-detection data for black ducks and Bobolinks suggests that encounter
rates for these species are indeed higher in more developed areas; the distribution of urban
land use intensities (L) at locations where birds were detected was shifted toward higher
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urban L values relative to non-detection locations (Figure 5) despite both detection and
non-detection checklists having the same potential for spatial bias toward urban areas.
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Figure 4. Median current flow values on agricultural lands (cropland, pasture, rangeland, woodland,
and all agricultural categories combined (‘all ag’)) for each focal species, as compared to median
current flow in developed areas and landscapes characterized by more natural land cover (i.e., all
natural lands (‘natural’), areas characterized by sagebrush or other shrub cover that do not overlap
with identified rangelands (‘sage/shrub’), and lands within USGS GAP 1 and GAP 2 protected
areas). Recall that ‘woodland’ in this context refers to natural or planted tree cover associated
with a functioning farm unit. Median current flow values are shown for (a) Greater sage-grouse,
(b) American Black Duck, and (c) Bobolink. Note that, given differences between connectivity model
inputs, current flow values are not comparable across species and should only be interpreted here in
terms of relative differences between different land cover/use types.
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Figure 5. Use of developed habitats by American Black Duck (black duck; top row) and Bobolink
(bottom row). Kernel density plots (a,d) show the distribution of urban land use intensity values
at locations where each species was detected (blue) and not detected (orange). Satellite imagery
(b,e) and corresponding connectivity surfaces (c,f) show species’ locations and predicted movement
potential (current flow) across development gradients in two example landscapes.

4. Discussion

Given that agriculture covers approximately 50% of land area in the lower 48 states [1],
understanding the complex effects of agriculture on avian species movement and habitat
use will be critical to maintaining connectivity, and therefore population persistence, for
many species. This work highlights the complexity of agriculture–wildlife interactions,
with species varying substantially in the potential for agricultural lands to provide habitat
and/or movement pathways. Our results suggest that agricultural landscapes can in some
cases provide valuable movement habitat for sage-grouse and Bobolinks, depending on the
type and intensity of agriculture practiced, while providing limited value for migratory
black ducks. For all three species, the capacity for agricultural lands to contribute to species
persistence likely depends heavily on management practices (e.g., grazing intensity, mow-
ing, or harvest frequency). Here, we offer key considerations for preserving or enhancing
the capacity of agricultural lands to support avian habitat and connectivity and identify
federal conservation incentive programs that can support wildlife-friendly management.

For sage-grouse, our connectivity model predicted that private rangelands support
among the highest current flow values of any of the land cover types considered. This
result confirms previous findings that private lands (particularly ranchlands) in the Western
U.S. play an important role in supporting sage-grouse movement [16], providing critical
pathways through areas of increased disturbance such as energy development [76]. Pre-
vious work has highlighted negative associations between sage-grouse and agricultural
lands [77,78], and indeed our results indicate that cultivated croplands supported only
low levels of current flow compared to developed areas, while overall habitat suitability
declined quickly as agricultural management intensity (L) increases beyond relatively low
values. However, by distinguishing between agricultural land uses and management
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intensities, we found that less intensively managed agricultural landscapes (rangelands,
and to a lesser extent pasture and remnant tree cover on farms, i.e., “woodlands”) can
potentially support sage-grouse movement.

We note that extensive research effort has been devoted to the conservation of sage-
grouse and the broader sagebrush ecosystem, including a recently released, multi-institutional
sagebrush conservation design plan [79] and several prior models of sage-grouse con-
nectivity, e.g., [16,29,30]. Our intention is for the present analysis to complement these
efforts by differentiating between agricultural classes and management intensities, thereby
highlighting potential targets for sage-grouse conservation on these working lands. This
complementarity is illustrated by our quantitative comparison with the sage-grouse con-
nectivity models developed by Crist et al. [29] and Row et al. [30]. This comparison showed
that our model captures the majority (~65%) of high connectivity habitat identified by the
two existing models while also highlighting additional areas of potential importance on
agricultural landscapes. The two previous models, which were conducted at coarser spatial
resolutions, tended to identify large, contiguous patches of high connectivity separated
by large expanses of lower connectivity lands. Our model provides a higher resolution
look at sage-grouse connectivity, capturing substantial proportions of the high connec-
tivity patches identified by Crist et al. and Row et al. while also identifying potentially
important movement pathways between these larger patches that in many cases pass
through rangeland habitat (see Figure S3 for a visual comparison of high connectivity
areas identified by each model). It is also worth noting that, when parameterizing our
connectivity model, we employed a relatively large maximum movement distance (120 km
as the maximum distance between two potentially connected pixels on the landscape) in
an effort to capture not only typical sage-grouse movement patterns, but also the potential
for rare long-distance movements [16,23]. As such, our model highlights areas of potential
connectivity between populations, which may be relevant to maintaining or increasing gene
flow. Conservation incentives that preserve relatively intact rangelands (e.g., the USDA’s
Agricultural Conservation Easements Program (ACEP)) and programs that support the
maintenance of native vegetation on cultivated landscapes (e.g., USDA’s Conservation
Reserve Program (CRP)) will be critical to sage-grouse conservation and can help to reduce
conflicts with residential and energy development [80]. Our maps of sage-grouse habitat
suitability and functional connectivity across working landscapes can be used to identify
where on private lands such conservation-focused programs are likely to be most effective.

Our analysis suggests that, of the three focal species considered here, migrating black
ducks were the most sensitive to agriculture, exhibiting low habitat suitability and low
predicted connectivity during the migratory season on agricultural land cover types across
the range of management intensities. The low predicted movement of black ducks on agri-
cultural lands likely stems from this species’ dependence on wetlands, coastal areas, and
other aquatic habitats as migratory stopover sites [81,82]. Preventing further conversion of
aquatic habitats to agriculture or other uses will therefore be critical to ensuring the preser-
vation of important stopover habitat for black ducks. While our results suggest limited
potential for agricultural lands to support black duck connectivity during migration, previ-
ous work indicates a role for croplands and pastures in providing foraging opportunities
for ducks during other times of the year (e.g., overwinter) [19,20]. Federal incentive pro-
grams can play an important role in protecting and restoring wetlands on or near working
farms to support migratory habitat (e.g., through the USDA’s CRP or Farmable Wetlands
programs), as well as incentivizing wildlife-friendly farming practices that support black
duck use of agricultural areas (e.g., through the USDA’s Environmental Quality Incentives
Program (EQIP) and Conservation Stewardship Program (CSP)). The Working Lands for
Wildlife program (administered by the USDA’s Natural Resources Conservation Service)
can also supply landowners with financial and technical assistance to restore and protect
wetland habitat on working lands and make wildlife-friendly improvements to croplands
and pastures. Importantly, however, conflict can arise when waterfowl usage of agricultural
areas results in crop damage [83]. Compensatory payments to farmers in several European
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countries have been effective in reducing such conflicts [84] and could be considered as a
conservation strategy on working lands in the U.S.

With the loss of native grasslands, grain fields and pastures are increasingly important
as breeding habitat for Bobolink [21,55]. Our models reflected this dependence on agri-
culture, with breeding season habitat suitability predicted to be relatively high in areas of
moderate to high agricultural management intensity, and croplands exhibiting the highest
median current flow value of any of the land cover types considered. However, despite
the high breeding season movement potential through managed agricultural landscapes,
Bobolink breeding success can nonetheless be substantially negatively impacted by inten-
sive management regimes that involve frequent harvest or mowing [22], which may disturb
or destroy nesting habitat multiple times during the breeding season [85]. Mismatches
between Bobolink reproductive timing and the harvest or mowing cycles of the agricultural
fields they depend on is only predicted to increase under changing climate conditions.
McGowan et al. [86] found that, while haying dates in Vermont advanced by approximately
ten days between 2002 and 2019, Bobolink nest initiation dates remained relatively constant.
The importance of agricultural lands throughout the Eastern and Midwestern U.S. for
Bobolink breeding season movements and the threats to breeding success posed by inten-
sive management regimes highlight the critical importance of incentivizing “land sharing”
conservation approaches (i.e., practices that maintain or enhance the capacity of farms
to support biodiversity through wildlife-friendly farming practices) [7,87] on grain and
pasture fields to ensure the persistence of Bobolink and other grassland bird species. The
federal government can play a role in supporting such wildlife-friendly practices through
programs such as the USDA’s CSP or EQIP programs, and other funding mechanisms that
compensate farmers to adjust harvest timing to account for grassland bird nesting cycles.

Our models predicted relatively high current flow through developed areas for both
black ducks and Bobolinks. For black ducks, the fact that many urban areas are situated
along coastal or inland waterways may explain this apparent preference for urbanized
landscapes as stopover habitat and thus high values of predicted current flow near urban-
ized areas (see Figure 5b,c). Detection data suggested that Bobolinks are less likely to be
found in the most highly developed landscapes but are often detected in suburban areas
and parks (Figure 5e). This was reflected in our Bobolink connectivity results, with current
flow tending to be high in moderately developed and agricultural landscapes, but lower in
heavily urbanized environments (Figure 5f). For both species, detection data indicated that,
while individuals are rarely detected in the most heavily developed environments (e.g.,
urban cores), they do use locations adjacent to these developed areas (urban green spaces
and waterways in the case of black ducks [88] and suburban and exurban open spaces for
Bobolinks [89]). It is also worth noting that, to avoid potential errors associated with eBird
count data, we treated each eBird checklist on which one or more individuals of a given
species were detected as one species detection event, and it therefore remains possible that
the detection events of black ducks or Bobolinks in urban areas tended to involve fewer
individuals than detection events in other habitat types. However, we expect that this is
unlikely to substantially influence our connectivity results given that these species do at
least occasionally move through developed landscapes.

Agricultural lands play a critical role in facilitating movement, foraging, and other
important processes for many avian species, but require thoughtful management and
strong partnerships with landowners to balance the potential benefits to wildlife with
landowner livelihoods and the necessity of maintaining a sustainable food supply. As
noted above, government conservation incentive programs can be a key component of
such management, and the effectiveness of these programs has been demonstrated by
prior research. For example, changes to grazing regimes and the planting of perennial
vegetation as part of CRP-funded conservation and restoration programs have been shown
to increase grassland bird densities [90] and support year-round habitat for sage-grouse [14].
Similarly, the Working Lands for Wildlife program has helped producers conserve more
than eight million acres of sage-grouse habitat. However, the substantial land area devoted
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to agriculture and limits on government spending for conservation programs necessitate
strategic approaches to allocating conservation resources. Our range-wide analyses of
habitat suitability and connectivity for three bird species impacted by agricultural land
uses can help to inform where government incentive programs are most critically needed
across the U.S. and are likely to be the most effective in conserving or restoring habitat for
these species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land12040746/s1, Figure S1: Effect of agricultural land use
intensity on avian species habitat suitability; Figure S2: Effects of season on predicted habitat
suitability; Figure S3: Sage-grouse connectivity model comparison.
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